of a golf ball whose diameter is 4.267cm","","1. The formula for the volume of a sphere is given by \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi r^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. The diameter of the golf ball is given as 4.267 cm, so the radius is half of that: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r = \\frac{4.267}{2} = 2.1335 \\, \\text{cm}\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>3. Substitute the radius into the volume formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi 2.1335^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Calculate the cube of the radius: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2.1335^3 = 9.707432537375\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>5. Substitute this back into the formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V=\\frac{4}{3}\\pi\\times9.707432537375\\approx40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>6. The volume of the golf ball is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .",1440,288,"calculate-the-volume-to-the-nearest-tenth-of-a-cubic-centimeter-of-a-golf-ball-whose-diameter-is-4-267cm",{"id":55,"category":47,"text_question":56,"photo_question":49,"text_answer":57,"step_text_answer":8,"step_photo_answer":8,"views":58,"likes":59,"slug":60},537970,"Express 69% as a decimal","Solution:\u003Cbr />\n1. Start with the percentage value: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>69\\%\u003C/math-field>\u003C/math-field>.\u003Cbr />\n2. Convert the percentage to a decimal by dividing by 100:\u003Cbr />\n* \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>69\\% = \\frac{69}{100}\u003C/math-field>\u003C/math-field>.\u003Cbr />\n3. Perform the division:\u003Cbr />\n* \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\frac{69}{100} = 0.69\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\nTherefore, the decimal representation of 69% is 0.69.",813,163,"express-69-as-a-decimal",{"id":62,"category":47,"text_question":63,"photo_question":49,"text_answer":64,"step_text_answer":8,"step_photo_answer":8,"views":65,"likes":66,"slug":67},537956,"The volume of a cylindrical tank that is 23 feet high with a radius of 6.25 feet is _____. RoundyourANSWER:tothenearestcubicfoot","Solution:\u003Cbr />\n1. Given:\u003Cbr />\n * Height, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h = 23\u003C/math-field>\u003C/math-field> feet\u003Cbr />\n * Radius, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r = 6.25\u003C/math-field>\u003C/math-field> feet\u003Cbr />\n\u003Cbr />\n2. Formula for the volume of a cylinder:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\pi r^2 h\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute the given values into the formula:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\pi \\times 6.25^2 \\times 23\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Calculate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6.25^2\u003C/math-field>\u003C/math-field>:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6.25^2 = 39.0625\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Substitute back into the volume formula:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\pi \\times 39.0625 \\times 23\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Calculate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>39.0625 \\times 23\u003C/math-field>\u003C/math-field>:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>39.0625 \\times 23 = 898.4375\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Multiply by \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\pi\u003C/math-field>\u003C/math-field> approximately\u003Cmath−fieldread−onlydefault−mode=\"inline−math\"class=\"math−expression\">\u003Cmath−fieldread−only>3.14159\u003C/math−field>\u003C/math−field>:\u003Cbr/>\n\u003Cmath−fieldread−onlydefault−mode=\"inline−math\"class=\"math−expression\">\u003Cmath−fieldread−only>V=3.14159times898.4375\u003C/math−field>\u003C/math−field>\u003Cbr/>\n\u003Cbr/>\n8.Calculatethevolume\u003Cmath−fieldread−onlydefault−mode=\"inline−math\"class=\"math−expression\">\u003Cmath−fieldread−only>V\u003C/math−field>\u003C/math−field>:\u003Cbr/>\n∗\u003Cmath−fieldread−onlydefault−mode=\"inline−math\"class=\"math−expression\">\u003Cmath−fieldread−only>Vapprox2823.6363\u003C/math−field>\u003C/math−field>\u003Cbr/>\n\u003Cbr/>\n9.Roundtheanswertothenearestcubicfoot:\u003Cbr/>\n∗Thevolumeofthecylindricaltankisapproximately\u003Cmath−fieldread−onlydefault−mode=\"inline−math\"class=\"math−expression\">\u003Cmath−fieldread−only>2824\u003C/math−field>\u003C/math−field>cubicfeet.",732,146,"the−volume−of−a−cylindrical−tank−that−is−23−feet−high−with−a−radius−of−6−25−feet−is−round−your−answer−to−the−nearest−cubic−foot","id":69,"category":47,"textquestion":70,"photoquestion":49,"textanswer":71,"steptextanswer":8,"stepphotoanswer":8,"views":72,"likes":73,"slug":74,537951,"150iswhatpercentof625\nRoundyouranswer","Solution:\u003Cbr/>\n1.Usetheformulaforpercentage:\u003Cbr/>\n−Percentage=\u003Cmath−fieldread−onlydefault−mode=\"inline−math\"class=\"math−expression\">\u003Cmath−fieldread−only>left(fractextparttextwholeright \\times 100\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Substitute the given values:\u003Cbr />\n- Part = 150\u003Cbr />\n- Whole = 625\u003Cbr />\n- Percentage = \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\leftfrac150625right \\times 100\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Calculate the fraction:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\frac{150}{625} = 0.24\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Convert to a percentage:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>0.24 \\times 100 = 24 \\%\u003C/math-field>\u003C/math-field>",1295,259,"150-is-what-percent-of-625-round-your-answer",{"id":76,"category":47,"text_question":77,"photo_question":49,"text_answer":78,"step_text_answer":8,"step_photo_answer":8,"views":79,"likes":80,"slug":81},537906,"561-t+154=137","1. Start with the equation:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>561-t+154=137\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Distribute the negative sign:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>561-t-154=137\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Simplify the left side by combining like terms:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>407-t=137\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Subtract 407 from both sides:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-t=137-407\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Simplify the right side:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-t=-270\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Multiply both sides by -1:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>t=270\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nAnswer: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>t = 270\u003C/math-field>\u003C/math-field>",1257,251,"561-t-154-137",{"id":83,"category":47,"text_question":84,"photo_question":49,"text_answer":85,"step_text_answer":8,"step_photo_answer":8,"views":86,"likes":87,"slug":88},537849,"Factorize \n2x2+11x+12","1. Identify the quadratic expression: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x^2 + 11x + 12\u003C/math-field>\u003C/math-field>.\u003Cbr />\n2. To factor, seek two numbers whose product is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2 \\cdot 12 = 24\u003C/math-field>\u003C/math-field> and sum is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>11\u003C/math-field>\u003C/math-field>.\u003Cbr />\n3. The numbers are \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3\u003C/math-field>\u003C/math-field> and \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>8\u003C/math-field>\u003C/math-field>.\u003Cbr />\n4. Rewrite the middle term using these numbers: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x^2 + 3x + 8x + 12\u003C/math-field>\u003C/math-field>.\u003Cbr />\n5. Group terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x2+3x + 8x+12\u003C/math-field>\u003C/math-field>.\u003Cbr />\n6. Factor out the greatest common factor in each group: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x2x+3 + 42x+3\u003C/math-field>\u003C/math-field>.\u003Cbr />\n7. Factor by grouping: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x+42x+3\u003C/math-field>\u003C/math-field>.\u003Cbr />\n8. The factorized form is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x+42x+3\u003C/math-field>\u003C/math-field>.",1386,277,"factorize-2x2-11x-12",{"id":90,"category":47,"text_question":91,"photo_question":49,"text_answer":92,"step_text_answer":8,"step_photo_answer":8,"views":93,"likes":94,"slug":95},537831,"Someone cuts a rope 13 into thirteen pieces How many times did they cut it","1. Start with 1 uncut rope.\u003Cbr />\n2. To create 13 pieces, you need to make cuts: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + 1 = 13\u003C/math-field>\u003C/math-field>, where \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> is the number of cuts.\u003Cbr />\n3. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x: x = 13 - 1\u003C/math-field>\u003C/math-field>.\u003Cbr />\n4. Therefore, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 12\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\nThe answer is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>12\u003C/math-field>\u003C/math-field> cuts.",406,81,"someone-cuts-a-rope-13-into-thirteen-pieces-how-many-times-did-they-cut-it",{"id":97,"category":47,"text_question":98,"photo_question":49,"text_answer":99,"step_text_answer":8,"step_photo_answer":8,"views":100,"likes":101,"slug":102},537788,"How to slove 2.4 : 1.5 step by step","1. Write the ratio as a fraction: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\frac{2.4}{1.5}\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. To simplify, divide both the numerator and the denominator of the fraction by the same number. Here, we can divide both by 0.3:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\[\\frac{2.4 \\div 0.3}{1.5 \\div 0.3} = \\frac{8}{5}\\]\u003C/math-field>\u003C/math-field>\u003Cbr>\u003Cbr>3. The simplified form of the ratio 2.4 : 1.5 is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\frac{8}{5}\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>Therefore, the solution is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\frac{8}{5}\u003C/math-field>\u003C/math-field> .",498,100,"how-to-slove-2-4-1-5-step-by-step",{"id":104,"category":47,"text_question":105,"photo_question":49,"text_answer":106,"step_text_answer":8,"step_photo_answer":8,"views":107,"likes":108,"slug":109},537690,"2x+3y=12\n4x-3y=5\n\nThis is for y=mx+b","1. Add the two equations to eliminate \\( y \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x + 3y = 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 4x - 3y = 5 \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (2x + 3y) + (4x - 3y) = 12 + 5 \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6x = 17 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{17}{6} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute \\( x = \\frac{17}{6} \\) into the first equation to find \\( y \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2\\left(\\frac{17}{6}\\right) + 3y = 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{34}{6} + 3y = 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3y = 12 - \\frac{34}{6} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3y = \\frac{72}{6} - \\frac{34}{6} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3y = \\frac{38}{6} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> y = \\frac{38}{18} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> y = \\frac{19}{9} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. The equation for \\( y = mx + b \\) therefore becomes:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> y = \\frac{17}{6}x - \\frac{19}{6} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Answer: \u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> y = \\frac{17}{6}x - \\frac{19}{6} \u003C/math-field>\u003C/math-field>",544,109,"2x-3y-12-4x-3y-5-this-is-for-y-mx-b",{"id":111,"category":47,"text_question":112,"photo_question":49,"text_answer":113,"step_text_answer":8,"step_photo_answer":8,"views":114,"likes":115,"slug":116},537669,"A 5 kW water heater uses a copper wire resistance that is 50 cm long and has a radius of 0.15 cm. To heat the water, the resistance is completely submerged. Determine the convection heat transfer coefficient when heating pure water to its boiling point using a resistance whose surface temperature is 150°C.","1. Identificar as variáveis relevantes para o problema:\u003Cbr>\u003Cbr>- Potência elétrica: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> P = 5 \\, \\text{kW} = 5000 \\, \\text{W} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Comprimento do fio: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> L = 0.5 \\, \\text{m} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Raio do fio: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> r = 0.15 \\, \\text{cm} = 0.0015 \\, \\text{m} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Temperatura da superfície: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> T_s = 150 \\, \\text{°C} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Temperatura da água em ebulição: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> T_\\infty = 100 \\, \\text{°C} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Determinar a área de superfície do fio de cobre:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A_s = 2 \\pi r L = 2 \\pi (0.0015) (0.5) \\approx 0.00471 \\, \\text{m}^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. A utilização da fórmula da transferência de calor por convecção:\u003Cbr>\u003Cbr>A relação básica para transferência de calor por convecção é dada por:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> Q = h A_s (T_s - T_\\infty) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Determinar a taxa de transferência de calor, que é também a potência fornecida:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> Q = P = 5000 \\, \\text{W} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Substituir na equação de convecção para calcular o coeficiente de convecção:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 5000 = h \\times 0.00471 \\times (150 - 100) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Resolver para \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> h \u003C/math-field>\u003C/math-field> :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h=\\frac{5000}{0.00471 \\times50}\\approx21222\\,\\text{W/m}^2\\text{K}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Portanto, o coeficiente de transferência de calor por convecção é aproximadamente \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>21222\\,\\text{W/m}^2\\text{K}\u003C/math-field>\u003C/math-field> .",1499,300,"a-5-kw-water-heater-uses-a-copper-wire-resistance-that-is-50-cm-long-and-has-a-radius-of-0-15-cm-to-heat-the-water-the-resistance-is-completely-submerged-determine-the-convection-heat-transfer-coef",{"first":6,"last":118,"prev":8,"next":10},12,{"current_page":6,"from":6,"last_page":118,"links":120,"path":154,"per_page":145,"to":145,"total":34},[121,124,127,129,131,133,135,138,141,144,147,150,152],{"url":6,"label":122,"active":123},"1",true,{"url":10,"label":125,"active":126},"2",false,{"url":13,"label":128,"active":126},"3",{"url":16,"label":130,"active":126},"4",{"url":19,"label":132,"active":126},"5",{"url":22,"label":134,"active":126},"6",{"url":136,"label":137,"active":126},7,"7",{"url":139,"label":140,"active":126},8,"8",{"url":142,"label":143,"active":126},9,"9",{"url":145,"label":146,"active":126},10,"10",{"url":148,"label":149,"active":126},11,"11",{"url":118,"label":151,"active":126},"12",{"url":10,"label":153,"active":126},"Next »","https://api.math-master.org/api/question/expert",{"$sicons":156},{"bxl:facebook-circle":157,"bxl:instagram":161,"mdi:web":163,"la:apple":165,"ph:google-logo-bold":168,"ph:google-logo":171},{"left":158,"top":158,"width":159,"height":159,"rotate":158,"vFlip":126,"hFlip":126,"body":160},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":158,"top":158,"width":159,"height":159,"rotate":158,"vFlip":126,"hFlip":126,"body":162},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":158,"top":158,"width":159,"height":159,"rotate":158,"vFlip":126,"hFlip":126,"body":164},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":158,"top":158,"width":166,"height":166,"rotate":158,"vFlip":126,"hFlip":126,"body":167},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":158,"top":158,"width":169,"height":169,"rotate":158,"vFlip":126,"hFlip":126,"body":170},256,"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"left":158,"top":158,"width":169,"height":169,"rotate":158,"vFlip":126,"hFlip":126,"body":172},"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"oVhJaef6Ht":8,"ZxMLtbqzJy":8,"t96FybqVTi":8,"fJ7gll588I":8},"/expert/hester-35?page=3"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}