Question

Calculate the limit of the following expression by elementary transformations: lim((sin(sin(x))/x)) if x->0

167

likes
834 views

Answer to a math question Calculate the limit of the following expression by elementary transformations: lim((sin(sin(x))/x)) if x->0

Expert avatar
Jayne
4.4
106 Answers
Um den Grenzwert des Ausdrucks \(\lim_{x \to 0} \frac{\sin(\sin x)}{x}\) zu finden, können wir eine Reihe von Vereinfachungen und Eigenschaften trigonometrischer Funktionen und Grenzwerte verwenden. ### Schritt 1: Erkennen Sie das innere Funktionsverhalten Die innere Funktion ist \(\sin x\), die sich 0 nähert, wenn \(x \to 0\). ### Schritt 2: Vereinfachen Sie den Sinus der Sinusfunktion Wir können die Näherung \(\sin x \approx x\) betrachten, wenn \(x\) nahe 0 liegt. Daher gilt \(\sin(\sin x) \approx \sin x\), insbesondere wenn \(x \to 0\). ### Schritt 3: Wenden Sie die Sinusnäherung erneut an Wenn wir erneut die Näherung \(\sin x \approx x\) verwenden, können wir sagen, dass \(\sin(\sin x) \approx \sin x \approx x\), wenn \(x\) sich 0 nähert. ### Schritt 4: Vereinfachen Sie den Ausdruck Mit \(\sin(\sin x) \approx x\) vereinfacht sich der Ausdruck \(\frac{\sin(\sin x)}{x}\) ungefähr zu \(\frac{x}{x} = 1\), wenn \(x \to 0\). ### Schritt 5: Kleine Winkel berücksichtigen Für sehr kleine Winkel ist die Näherung \(\sin x \approx x\) ziemlich genau. Da \(x\) gegen 0 geht, ist \(\sin x\) ebenfalls sehr klein, und daher kann \(\sin(\sin x)\) sehr genau durch \(x\) angenähert werden. ### Abschluss Daher gilt \(\lim_{x \to 0} \frac{\sin(\sin x)}{x} = 1\). Diese Schlussfolgerung nutzt die grundlegende Eigenschaft der Sinusfunktion um Null herum und die Tatsache, dass für kleine \(x\) \(\sin x \approx x\) sehr genau gilt. Dies sind elementare Transformationen und Näherungen, die in der Infinitesimalrechnung häufig verwendet werden, um Grenzwerte mit trigonometrischen Funktionen zu ermitteln.

Frequently asked questions (FAQs)
What is the value of √(9) in the square root function?
+
Math question: "Solve for x: log2(x) + log3(x) = 4"
+
What is the speed of a car if it travels a distance of 150 km in 2.5 hours?
+
New questions in Mathematics
The patient is prescribed a course of 30 tablets. The tablets are prescribed “1 tablet twice a day”. How many days does a course of medication last?
5(4x+3)=75
The data set (75, 85, 58, 72, 70, 75) is a random sample from the normal distribution No(µ, σ). Determine a 95% two-sided confidence interval for the mean µ .
2x-4y=-6; -4y+4y=-8
The miles per gallon (mpg) for each of 20 medium-sized cars selected from a production line during the month of March are listed below. 23.0 21.2 23.5 23.6 20.1 24.3 25.2 26.9 24.6 22.6 26.1 23.1 25.8 24.6 24.3 24.1 24.8 22.1 22.8 24.5 (a) Find the z-scores for the largest measurement. (Round your answers to two decimal places.) z =
-0.15/32.6
-3(-4x+5)=-6(7x-8)+9-10x
Substitute a=2 and b=-3 and c=-4 to evaluate 2ac/(-2b^2-a)
Solve the following equation for x in exact form and then find the value to the nearest hundredths (make sure to show your work): 5e3x – 3 = 25
Express the trigonometric form of the complex z = -1 + i.
For what values of m is point P (m, 1 - 2m) in the 2⁰ quadrant?
36 cars of the same model that were sold in a dealership, and the number of days that each one remained in the dealership yard before being sold is determined. The sample average is 9.75 days, with a sample standard deviation of 2, 39 days. Construct a 95% confidence interval for the population mean number of days that a car remains on the dealership's forecourt
Find the area of a triangle ABC when m<C = 14 degrees, a = 5.7 miles, and b = 9.3 miles.
A salesperson earns a base salary of $600 per month plus a commission of 10% of the sales she makes. You discover that on average, it takes you an hour and a half to make $100 worth of sales. How many hours will you have to work on average each month for your income to be $2000?
Find I (Intrest) using simple interest formula of 17700 @ 15% for 4 years
if y=1/w^2 yw=2-x; find dy/dx
2+2020202
Solve the following 9x - 9 - 6x = 5 + 8x - 9
answer this math question The scale on a map is drawn so that 5.5 inches corresponds to an actual distance of 225 miles. If two cities are 12.75 inches apart on the map, how many miles apart are they? (Round to the nearest tenth) miles apart. The two cities are how many miles apart
23,456 + 3,451