Question

Calculate the limit of the following expression by elementary transformations: lim((sin(sin(x))/x)) if x->0

167

likes
834 views

Answer to a math question Calculate the limit of the following expression by elementary transformations: lim((sin(sin(x))/x)) if x->0

Expert avatar
Jayne
4.4
106 Answers
Um den Grenzwert des Ausdrucks \(\lim_{x \to 0} \frac{\sin(\sin x)}{x}\) zu finden, können wir eine Reihe von Vereinfachungen und Eigenschaften trigonometrischer Funktionen und Grenzwerte verwenden. ### Schritt 1: Erkennen Sie das innere Funktionsverhalten Die innere Funktion ist \(\sin x\), die sich 0 nähert, wenn \(x \to 0\). ### Schritt 2: Vereinfachen Sie den Sinus der Sinusfunktion Wir können die Näherung \(\sin x \approx x\) betrachten, wenn \(x\) nahe 0 liegt. Daher gilt \(\sin(\sin x) \approx \sin x\), insbesondere wenn \(x \to 0\). ### Schritt 3: Wenden Sie die Sinusnäherung erneut an Wenn wir erneut die Näherung \(\sin x \approx x\) verwenden, können wir sagen, dass \(\sin(\sin x) \approx \sin x \approx x\), wenn \(x\) sich 0 nähert. ### Schritt 4: Vereinfachen Sie den Ausdruck Mit \(\sin(\sin x) \approx x\) vereinfacht sich der Ausdruck \(\frac{\sin(\sin x)}{x}\) ungefähr zu \(\frac{x}{x} = 1\), wenn \(x \to 0\). ### Schritt 5: Kleine Winkel berücksichtigen Für sehr kleine Winkel ist die Näherung \(\sin x \approx x\) ziemlich genau. Da \(x\) gegen 0 geht, ist \(\sin x\) ebenfalls sehr klein, und daher kann \(\sin(\sin x)\) sehr genau durch \(x\) angenähert werden. ### Abschluss Daher gilt \(\lim_{x \to 0} \frac{\sin(\sin x)}{x} = 1\). Diese Schlussfolgerung nutzt die grundlegende Eigenschaft der Sinusfunktion um Null herum und die Tatsache, dass für kleine \(x\) \(\sin x \approx x\) sehr genau gilt. Dies sind elementare Transformationen und Näherungen, die in der Infinitesimalrechnung häufig verwendet werden, um Grenzwerte mit trigonometrischen Funktionen zu ermitteln.

Frequently asked questions (FAQs)
Question: Multiply the inequality 3x - 2y ≥ 6 by 4, and graph the corresponding line. Shade the region below the line.
+
Question: Convert 5 meters to centimeters.
+
What is the equation of the function obtained by vertically stretching the graph of f(x) = 1/x by a factor of 2, then reflecting it over the x-axis?
+
New questions in Mathematics
1/2x +3 <4x-7
If O(3,-2) is reflected across x = 2. What are the coordinates of O
X^2 = 25
Determine the equations of the recipes that pass through the following pairs of points P1 (2;-1) and p2 (4;-1)
[(36,000,000)(0.000003)^2]divided(0.00000006)
The data set (75, 85, 58, 72, 70, 75) is a random sample from the normal distribution No(µ, σ). Determine a 95% two-sided confidence interval for the mean µ .
prove that if n odd integer then n^2+5 is even
-3(-4x+5)=-6(7x-8)+9-10x
. What will be the osmotic pressure of a solution that was prepared at 91°F by dissolving 534 grams of aluminum hydroxide in enough water to generate 2.784 ml of solution.
Quadratic equation 2X = 15/X + 7
5x+13+7x-10=99
(X+2)(x+3)=4x+18
Determine the Linear function whose graph passes through the points (6, -2) and has slope 3.
A buyer purchased a North Carolina home for $475,250. The seller allowed the buyer to assume his first small mortgage with a loan balance of $110,000. How much is the excise tax paid in the transaction? $951 $729.50 $950.50 $221 none of the above
a) Statistics scores are normally distributed with the mean of 75 and standard deviation of 7. What is the probability that a student scores between 80 and 88
The average undergraduate cost per tuition, fees, room, and board for all institutions last year was $26,025. A random sample of 40 institutions of higher learning this year indicated that the mean tuition, fees, room, and board for the sample was $27,690, and the population standard deviation is $5492. At the 0.05 level of significance, is there sufficient evidence that the cost has increased? (Remember to follow the steps in hypothesis testing)
8/9 divided by 10/6
How many moles are there in 235 grams of potassium thiosulfate pentahydrate? K2S2O3*5(H2O)
A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 55.0 min at 100.0 km/h, 14.0 min at 65.0 km/h, and 45.0 min at 60.0 km/h and spends 20.0 min eating lunch and buying gas. (a) Determine the average speed for the trip.
f(r) = 1/r+9 find f(x^2) + 1