Question

Calculate the limit of the following expression by elementary transformations: lim((sin(sin(x))/x)) if x->0

167

likes
834 views

Answer to a math question Calculate the limit of the following expression by elementary transformations: lim((sin(sin(x))/x)) if x->0

Expert avatar
Jayne
4.4
106 Answers
Um den Grenzwert des Ausdrucks \(\lim_{x \to 0} \frac{\sin(\sin x)}{x}\) zu finden, können wir eine Reihe von Vereinfachungen und Eigenschaften trigonometrischer Funktionen und Grenzwerte verwenden. ### Schritt 1: Erkennen Sie das innere Funktionsverhalten Die innere Funktion ist \(\sin x\), die sich 0 nähert, wenn \(x \to 0\). ### Schritt 2: Vereinfachen Sie den Sinus der Sinusfunktion Wir können die Näherung \(\sin x \approx x\) betrachten, wenn \(x\) nahe 0 liegt. Daher gilt \(\sin(\sin x) \approx \sin x\), insbesondere wenn \(x \to 0\). ### Schritt 3: Wenden Sie die Sinusnäherung erneut an Wenn wir erneut die Näherung \(\sin x \approx x\) verwenden, können wir sagen, dass \(\sin(\sin x) \approx \sin x \approx x\), wenn \(x\) sich 0 nähert. ### Schritt 4: Vereinfachen Sie den Ausdruck Mit \(\sin(\sin x) \approx x\) vereinfacht sich der Ausdruck \(\frac{\sin(\sin x)}{x}\) ungefähr zu \(\frac{x}{x} = 1\), wenn \(x \to 0\). ### Schritt 5: Kleine Winkel berücksichtigen Für sehr kleine Winkel ist die Näherung \(\sin x \approx x\) ziemlich genau. Da \(x\) gegen 0 geht, ist \(\sin x\) ebenfalls sehr klein, und daher kann \(\sin(\sin x)\) sehr genau durch \(x\) angenähert werden. ### Abschluss Daher gilt \(\lim_{x \to 0} \frac{\sin(\sin x)}{x} = 1\). Diese Schlussfolgerung nutzt die grundlegende Eigenschaft der Sinusfunktion um Null herum und die Tatsache, dass für kleine \(x\) \(\sin x \approx x\) sehr genau gilt. Dies sind elementare Transformationen und Näherungen, die in der Infinitesimalrechnung häufig verwendet werden, um Grenzwerte mit trigonometrischen Funktionen zu ermitteln.

Frequently asked questions (FAQs)
What is the angle in degrees for a point on the unit circle with coordinates (1/2, √3/2)?
+
Find the vertex (h,k) of the parabola 𝑦 = 2𝑥^2 + 4𝑥 - 3.
+
Math Question: What is the value of the unknown angle in a triangle when the other two angles measure 40° and 70°?
+
New questions in Mathematics
Simplify the expression sin³(x)+cos³(x), using trigonometric functions
reduction method 2x-y=13 x+y=-1
Investing equal amounts of money into each of five business ventures Let's say you plan. 20 to choose from If there are initiatives, how many different ones among 20 initiatives? five startups can be selected?
Determine the momentum of a 20 kg body traveling at 20 m/s.
By direct proof, how can you prove that “The sum of any three consecutive even integers is always a multiple of 6”.
Let r: x - y 5 = 0. Determine a general equation of the line s parallel to the line r, which forms an isosceles triangle with area 8 with the line x = 5 and the Ox axis.
In the telephone exchange of a certain university, calls come in at a rate of 5 every 2 minutes. Assuming a Poisson distribution, the average number of calls per second is: a) 1/8 b) 1/12 c) 1/10 d) 2/5 e) 1/24
using the math and science known about the jefferson river bridge Find a truss in use and develop a load diagram. Use a load of 50 lb on each joint along the bottom of the truss for a truss that actrs as a bridge and along the top joints for a truss that acts as a roof
The ninth term of a given geometric progression, with reason q , is 1792, and its fourth term is 56. Thus, calculate the fourth term of another geometric progression, whose ratio is q +1 and whose first term is equal to the first term of the first P.G. described.
Convert 9/13 to a percent
Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π). cos30=0
In a 24 hours period, the average number of boats arriving at a port is 10. Assuming that boats arrive at a random rate that is the same for all subintervals of equal length (i.e. the probability of a boat arriving during a 1 hour period the same for every 1 hour period no matter what). Calculate the probability that more than 1 boat will arrive during a 1 hour period. (P(X>1) ) Give your answers to 4 decimal places and in a range between 0 and 1
Calculate the change in internal energy of a gas that receives 16000 J of heat at constant pressure (1.3 atm) expanding from 0.100 m3 to 0.200 m3. Question 1Answer to. 7050J b. 2125J c. None of the above d. 2828J and. 10295 J
A buyer purchased a North Carolina home for $475,250. The seller allowed the buyer to assume his first small mortgage with a loan balance of $110,000. How much is the excise tax paid in the transaction? $951 $729.50 $950.50 $221 none of the above
A salesperson earns a base salary of $600 per month plus a commission of 10% of the sales she makes. You discover that on average, it takes you an hour and a half to make $100 worth of sales. How many hours will you have to work on average each month for your income to be $2000?
Consider the function f(x)=1/2(x+1)^2-3. Use the preceding/following interval method to estimate the instantaneous rate of change at 𝑥 = 1.
2+2020202
a coffee shop has 9 types of creamer and 11 types of sweetener. In how any ways can a person make their coffee?
Solve the system of equations by the addition method. 0.01x-0.08y=-0.1 0.2x+0.6y=0.2
Question 3 A square has a perimeter given by the algebraic expression 24x – 16. Write the algebraic expression that represents one of its sides.