Question

Calculate the limit of the following expression by elementary transformations: lim((sin(sin(x))/x)) if x->0

167

likes
834 views

Answer to a math question Calculate the limit of the following expression by elementary transformations: lim((sin(sin(x))/x)) if x->0

Expert avatar
Jayne
4.4
106 Answers
Um den Grenzwert des Ausdrucks \(\lim_{x \to 0} \frac{\sin(\sin x)}{x}\) zu finden, können wir eine Reihe von Vereinfachungen und Eigenschaften trigonometrischer Funktionen und Grenzwerte verwenden. ### Schritt 1: Erkennen Sie das innere Funktionsverhalten Die innere Funktion ist \(\sin x\), die sich 0 nähert, wenn \(x \to 0\). ### Schritt 2: Vereinfachen Sie den Sinus der Sinusfunktion Wir können die Näherung \(\sin x \approx x\) betrachten, wenn \(x\) nahe 0 liegt. Daher gilt \(\sin(\sin x) \approx \sin x\), insbesondere wenn \(x \to 0\). ### Schritt 3: Wenden Sie die Sinusnäherung erneut an Wenn wir erneut die Näherung \(\sin x \approx x\) verwenden, können wir sagen, dass \(\sin(\sin x) \approx \sin x \approx x\), wenn \(x\) sich 0 nähert. ### Schritt 4: Vereinfachen Sie den Ausdruck Mit \(\sin(\sin x) \approx x\) vereinfacht sich der Ausdruck \(\frac{\sin(\sin x)}{x}\) ungefähr zu \(\frac{x}{x} = 1\), wenn \(x \to 0\). ### Schritt 5: Kleine Winkel berücksichtigen Für sehr kleine Winkel ist die Näherung \(\sin x \approx x\) ziemlich genau. Da \(x\) gegen 0 geht, ist \(\sin x\) ebenfalls sehr klein, und daher kann \(\sin(\sin x)\) sehr genau durch \(x\) angenähert werden. ### Abschluss Daher gilt \(\lim_{x \to 0} \frac{\sin(\sin x)}{x} = 1\). Diese Schlussfolgerung nutzt die grundlegende Eigenschaft der Sinusfunktion um Null herum und die Tatsache, dass für kleine \(x\) \(\sin x \approx x\) sehr genau gilt. Dies sind elementare Transformationen und Näherungen, die in der Infinitesimalrechnung häufig verwendet werden, um Grenzwerte mit trigonometrischen Funktionen zu ermitteln.

Frequently asked questions (FAQs)
How many sides does a polygon have if the sum of its interior angles equals 1080 degrees?
+
What is the result of dividing 4/9 by 1/3?
+
What is the measure of π/6 radians in degrees?
+
New questions in Mathematics
A pump with average discharge of 30L/second irrigate 100m wide and 100m length field area crop for 12 hours. What is an average depth of irrigation in mm unIt?
Solution to the equation y'' - y' - 6y = 0
A car tire can rotate at a frequency of 3000 revolutions per minute. Given that a typical tire radius is 0.5 m, what is the centripetal acceleration of the tire?
Solve: −3(−2x+23)+12=6(−4x+9)+9.
The ratio of tomatoes to red apples is 2:5. If there are 20 tomaoes in the garden, how many red apples are there?
Supposed 60% of the register voters in a country or democrat. If a sample of 793 voters is selected, what is the probability that the sample proportion of Democrats will be greater than 64% round your answer to four decimal places
In a store, a person carries 14 kilos of rice and 28 kilos of flour. In what ratio are the kilos found? (Remember to simplify until you reach an irreducible fraction)
Log(45)
Clara usually walks briskly to the farmers' market and it takes her 22 minutes. Today she walked leisurely and it took 61/2 minutes. How much more time than usual did she take to reach the market today?
prove that if n odd integer then n^2+5 is even
Prove that it is not possible to arrange the integers 1 to 240 in a table with 15 rows and 16 columns in such a way that the sum of the numbers in each of the columns is the same.
I want you to solve this problem as a grade sixth pupil in primary school: 8 Pigs ate 6 bags of fee in 20 days. How long will it take 10 pigs to eat 15 bags of feed eating at the same rate?
Is -11/8 greater than or less than -1.37?
The two sides of the triangle are 12 cm and 5 cm, and the angle between the sides is 60°. Cover the area of ​​the triangle!
Find the equation of a straight line that has slope 3 and passes through the point of (1, 7) . Write the equation of the line in general forms
What is the percentage of nitrogen abundance in copper dinatrate Cu(NO3)2
The slope of the tangent line to the curve f(x)=4tan x at the point (π/4,4)
Find the orthogonal projection of a point A = (1, 2, -1) onto a line passing through the points Pi = (0, 1, 1) and P2 = (1, 2, 3).
Let f(x)=-1/2x+5 evaluate f(-6)
13/25+7/16