Question

Calculate the work required so that a block of mass 5 kg initially at rest and placed on a horizontal frictionless surface, tied by a rope 20 cm long fixed at the other end, begins to rotate until it reaches a speed angular of 2 rps. Do you need to add more work to maintain this speed? Justify your answer by applying the principle of conservation of energy.

67

likes
335 views

Answer to a math question Calculate the work required so that a block of mass 5 kg initially at rest and placed on a horizontal frictionless surface, tied by a rope 20 cm long fixed at the other end, begins to rotate until it reaches a speed angular of 2 rps. Do you need to add more work to maintain this speed? Justify your answer by applying the principle of conservation of energy.

Expert avatar
Hester
4.8
116 Answers
## Treball necessari per girar el bloc Podem analitzar aquest problema utilitzant els conceptes d'inèrcia rotacional, energia cinètica i principi de conservació de l'energia. **Donat:** * Massa del bloc (m) = 5 kg * Longitud de la corda (L) = 20 cm = 0,2 m (convertit a metres) * Velocitat angular final (ω_f) = 2 rad/s **Càlculs:** 1. **Moment d'inèrcia (I):** Com que el bloc gira al voltant d'un extrem de la corda, actua com una massa puntual a l'extrem d'una vareta. El moment d'inèrcia (I) d'aquest sistema és: I = mL^2 I = (5 kg) * (0,2 m)^2 I = 0,2 kgm^2 2. **Energia cinètica (KE):** Un cop el bloc comença a girar, guanya energia cinètica. L'energia cinètica d'un objecte en rotació és: KE = 1/2 * I * ω_f^2 KE = 1/2 * (0,2 kgm^2) * (2 rad/s)^2 KE = 0,4 J 3. **Treball fet (W):** Suposant que no hi ha pèrdua d'energia per fricció, el treball realitzat (W) per fer girar el bloc és igual a l'energia cinètica final guanyada. W = KE W = 0,4 J ## Mantenint la velocitat **No es requereix cap treball addicional per mantenir la velocitat angular de 2 rps un cop aconseguit.** Heus aquí per què, basant-nos en el principi de conservació de l'energia: * **Conservació de l'energia mecànica:** Aquest principi estableix que l'energia mecànica total (energia cinètica + energia potencial) en un sistema tancat es manté constant. * **Inicial i finalの状態 (joutai, estat):** Inicialment, el bloc està en repòs sobre una superfície horitzontal. Per tant, la seva energia cinètica és zero. Pot tenir una mica d'energia potencial a causa de la seva posició relativa a un punt de referència, però això no és rellevant aquí ja que la superfície és horitzontal. L'estat final té el bloc girant amb energia cinètica (0,4 J) però sense canvis en l'energia potencial. * **Sense pèrdua d'energia:** Com que la superfície no té fricció, no hi ha dissipació d'energia a causa de la fricció. Per tant, segons el principi de conservació de l'energia, una vegada que el bloc assoleixi una velocitat angular de 2 rps i la seva energia cinètica esdevingui 0,4 J, mantindrà aquesta velocitat indefinidament sense cap entrada de treball addicional sempre que el sistema romangui sense fricció i tancat (és a dir, , no hi actuen forces externes).

Frequently asked questions (FAQs)
What is the value of f(-2) for the cubic function f(x) = x^3? (
+
Solve for x: sinh(x) - cosh(x) = 2
+
Math Question: Graph the inequality 2x + 3y > 4 in the coordinate plane.
+
New questions in Mathematics
Write 32/25 as a percent
Imagine that you are in an electronics store and you want to calculate the final price of a product after applying a discount. The product you are interested in has an original price of $1000 MN, but, for today, the store offers a 25% discount on all its products. Develop an algorithm that allows you to calculate the final price you will pay, but first point out the elements.
STUDENTS IN A CLASS LEARN ONLY ONE FOREIGN LANGUAGE. two-sevenths of the students learn German, half of the students learn Spanish, and the remaining six students learn Italian. what is the number of students in this class? detail your reasoning carefully.
Find the measures of the sides of ∆KPL and classify each triangle by its sides k (-2,-6), p (-4,0), l (3,-1)
Supposed 60% of the register voters in a country or democrat. If a sample of 793 voters is selected, what is the probability that the sample proportion of Democrats will be greater than 64% round your answer to four decimal places
According to a survey in a country 27% of adults do not own a credit card suppose a simple random sample of 800 adults is obtained . Describe the sampling distribution of P hat , the sample proportion of adults who do not own a credit card
A merchant can sell 20 electric shavers a day at a price of 25 each, but he can sell 30 if he sets a price of 20 for each electric shaver. Determine the demand equation, assuming it is linear. Consider (P= price, X= quantity demanded)
A test has 5 multiple choice questions. Each question has 4 alternatives, only one of which is correct. A student who did not study for the test randomly chooses one alternative for each question.(a) What is the probability of him getting a zero on the test?(b) What is the probability of him getting a three or more? The maximum mark for the test is 5, with each question worth one point.
A triangular window has a base of 6 ft. and a height of 7 ft. What is its area?
89, ÷ 10
7=-4/3y -1
Subjects are randomly assigned to one of three specialties for a 3-month rotation, and at the end of that rotation, they are given a test that measures moral development. The scores are listed below, where a high score represents high moral development and a low score represents low moral development. Orthopedics Pediatrics Oncology 77 63 54 84 93 97 66 97 76 44 76 65 59 45 91 40 88 68 28 74 54 M = 56.86 M = 76.57 M = 72.14 What is Nt?
Show work on 4108 divided by 4
A cell phone company offers two calling plans. Plan A: $20 per month plus 5 cents for each minute, or Plan B: $30 per month plus 3 cents for each minute. [2] Write an equation to describe the monthly cost (a) C (in $) in terms of the time m (in minutes) of phone calls when Plan A is applied.
A tree cast a shadow of 26 meters when the angle of evaluation of the sum is 24°. Find the height of the tree to the nearest meter
Given two lines 𝐿1: 𝑥 + 4𝑦 = −10 and 𝐿2: 2𝑥 − 𝑦 = 7. i. Find the intersection point of 𝐿1 and 𝐿2.
-6 - t / 4 = -1
Consider a sample space S, and two events A and B such that P(A ∩ B) = 0.2, P(A ∪ B) = 0.6, P(B ∪ ̄A) = 0.8 (a) [0.5 points] Calculate P (A). (b) [0.5 points] Calculation P (B)
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.
Solve the system of equations by the addition method. 0.01x-0.08y=-0.1 0.2x+0.6y=0.2