Question

Calculate the work required so that a block of mass 5 kg initially at rest and placed on a horizontal frictionless surface, tied by a rope 20 cm long fixed at the other end, begins to rotate until it reaches a speed angular of 2 rps. Do you need to add more work to maintain this speed? Justify your answer by applying the principle of conservation of energy.

67

likes
335 views

Answer to a math question Calculate the work required so that a block of mass 5 kg initially at rest and placed on a horizontal frictionless surface, tied by a rope 20 cm long fixed at the other end, begins to rotate until it reaches a speed angular of 2 rps. Do you need to add more work to maintain this speed? Justify your answer by applying the principle of conservation of energy.

Expert avatar
Hester
4.8
116 Answers
## Treball necessari per girar el bloc Podem analitzar aquest problema utilitzant els conceptes d'inèrcia rotacional, energia cinètica i principi de conservació de l'energia. **Donat:** * Massa del bloc (m) = 5 kg * Longitud de la corda (L) = 20 cm = 0,2 m (convertit a metres) * Velocitat angular final (ω_f) = 2 rad/s **Càlculs:** 1. **Moment d'inèrcia (I):** Com que el bloc gira al voltant d'un extrem de la corda, actua com una massa puntual a l'extrem d'una vareta. El moment d'inèrcia (I) d'aquest sistema és: I = mL^2 I = (5 kg) * (0,2 m)^2 I = 0,2 kgm^2 2. **Energia cinètica (KE):** Un cop el bloc comença a girar, guanya energia cinètica. L'energia cinètica d'un objecte en rotació és: KE = 1/2 * I * ω_f^2 KE = 1/2 * (0,2 kgm^2) * (2 rad/s)^2 KE = 0,4 J 3. **Treball fet (W):** Suposant que no hi ha pèrdua d'energia per fricció, el treball realitzat (W) per fer girar el bloc és igual a l'energia cinètica final guanyada. W = KE W = 0,4 J ## Mantenint la velocitat **No es requereix cap treball addicional per mantenir la velocitat angular de 2 rps un cop aconseguit.** Heus aquí per què, basant-nos en el principi de conservació de l'energia: * **Conservació de l'energia mecànica:** Aquest principi estableix que l'energia mecànica total (energia cinètica + energia potencial) en un sistema tancat es manté constant. * **Inicial i finalの状態 (joutai, estat):** Inicialment, el bloc està en repòs sobre una superfície horitzontal. Per tant, la seva energia cinètica és zero. Pot tenir una mica d'energia potencial a causa de la seva posició relativa a un punt de referència, però això no és rellevant aquí ja que la superfície és horitzontal. L'estat final té el bloc girant amb energia cinètica (0,4 J) però sense canvis en l'energia potencial. * **Sense pèrdua d'energia:** Com que la superfície no té fricció, no hi ha dissipació d'energia a causa de la fricció. Per tant, segons el principi de conservació de l'energia, una vegada que el bloc assoleixi una velocitat angular de 2 rps i la seva energia cinètica esdevingui 0,4 J, mantindrà aquesta velocitat indefinidament sense cap entrada de treball addicional sempre que el sistema romangui sense fricció i tancat (és a dir, , no hi actuen forces externes).

Frequently asked questions (FAQs)
Find the arccosine of the square root of one-half.
+
What is the result of adding vector A (5, -3) to vector B (-2, 4)?
+
What is the standard equation of a hyperbola with a center at (h,k), a horizontal transverse axis of length 2a, and a vertical conjugate axis of length 2b?
+
New questions in Mathematics
Calculate to represent the function whose graph is a line that passes through the points (1,2) and (−3,4). What is your slope?
Additionally, the boss asked Armando to determine how many toy sales branches he would have in the fifteenth year, knowing that the first year they started with two branches, by the second they already had 5 branches and, by the third year, they had 8 branches. From the above, determine the number of branches it will have for the fifteenth year.
Two numbers differ by 7, and the sum of their squares is 29. Find the numbers.
(2b) to the 1/4th power. Write the expression in radical form.
2.3/-71.32
The durability of a tire of a certain brand is a Normal random variable with an average of 64,000 km and a standard deviation of 9,000 km. Assuming independence between tires, what is the probability that the 4 tires on a car will last more than 58,000 km?
determine the polynomial F of degree 2 that interpolates. f at points (0;1) (2;5) (4;6). calculate F(0.8). Note: Using the polynomial expression with difference operator.
How much does the average college student spend on food per month? A random sample of 50 college students showed a sample mean $670 with a standard deviation $80. Obtain the 95% confidence interval for the amount college students spend on food per month.
3+7
Two minus log 3X equals log (X over 12)
Two particles of electrical charges Q1=3.8×10-⁶C and q,=4.4×10-⁶C are separated in vacuum by a distance of 4.0.10-⁸ m. Since K=9.0.10⁹ N.m²/C², the intensity of the interaction force between them, in newtons, is?
In poker, a full house consists of five cards, where two of the cards have the same number (or letter) and the remaining three also have the same number (or letter) as each other (but not as the previous two cards). Use a search engine or Wikipedia to understand the concept better if necessary. In how many different ways can one obtain a full house?
Find the vertex F(x)=x^2-10x
Calculate the area of the parallelogram with adjacent vertices (1,4, −2), (−3,1,6) 𝑦 (1, −2,3)
A company dedicated to the manufacture of shirts sells the units at a price of $40, the cost of each shirt is $24, a commission is paid for the sale of a unit of shirt of $2 and its fixed costs are $3500 Determine the marginal contribution
In an economy with C= 10+0.8 Yd ; I= 20+0.1Y ; G= 100 ; X= 20 ; M=10+0.2Y ; T=-10+0.2Y and R= 10, when knew that Yd= Y-T+R. How much is the budget? A. -23.18 B. -28.13 C. -13.28 D. -32.18
Consider mixing 150 ml, 0.1M, HCI with 100 ml, 0.2M, KOH solution. Determine the pH of final solution.
A block slides across the floor with a force of 20N, which has an angle of 30°. The mass of the block is 2kg and the coefficient of friction is 0.1. Calculate the value of all the forces involved in this system and finally the value of the acceleration.
Cuboid containers (open at the top) should be examined with regard to their volume. The figure below shows a network of such containers (x ∈ Df). Determine a function ƒ (assignment rule and definition area D) that describes the volume of these containers and calculate the volume of such a container if the content of the base area is 16 dm². Show that this function f has neither a local maximum nor a global maximum
(3b)⋅(5b^2)⋅(6b^3)