Question

Calculate the work required so that a block of mass 5 kg initially at rest and placed on a horizontal frictionless surface, tied by a rope 20 cm long fixed at the other end, begins to rotate until it reaches a speed angular of 2 rps. Do you need to add more work to maintain this speed? Justify your answer by applying the principle of conservation of energy.

67

likes
335 views

Answer to a math question Calculate the work required so that a block of mass 5 kg initially at rest and placed on a horizontal frictionless surface, tied by a rope 20 cm long fixed at the other end, begins to rotate until it reaches a speed angular of 2 rps. Do you need to add more work to maintain this speed? Justify your answer by applying the principle of conservation of energy.

Expert avatar
Hester
4.8
117 Answers
## Treball necessari per girar el bloc Podem analitzar aquest problema utilitzant els conceptes d'inèrcia rotacional, energia cinètica i principi de conservació de l'energia. **Donat:** * Massa del bloc (m) = 5 kg * Longitud de la corda (L) = 20 cm = 0,2 m (convertit a metres) * Velocitat angular final (ω_f) = 2 rad/s **Càlculs:** 1. **Moment d'inèrcia (I):** Com que el bloc gira al voltant d'un extrem de la corda, actua com una massa puntual a l'extrem d'una vareta. El moment d'inèrcia (I) d'aquest sistema és: I = mL^2 I = (5 kg) * (0,2 m)^2 I = 0,2 kgm^2 2. **Energia cinètica (KE):** Un cop el bloc comença a girar, guanya energia cinètica. L'energia cinètica d'un objecte en rotació és: KE = 1/2 * I * ω_f^2 KE = 1/2 * (0,2 kgm^2) * (2 rad/s)^2 KE = 0,4 J 3. **Treball fet (W):** Suposant que no hi ha pèrdua d'energia per fricció, el treball realitzat (W) per fer girar el bloc és igual a l'energia cinètica final guanyada. W = KE W = 0,4 J ## Mantenint la velocitat **No es requereix cap treball addicional per mantenir la velocitat angular de 2 rps un cop aconseguit.** Heus aquí per què, basant-nos en el principi de conservació de l'energia: * **Conservació de l'energia mecànica:** Aquest principi estableix que l'energia mecànica total (energia cinètica + energia potencial) en un sistema tancat es manté constant. * **Inicial i finalの状態 (joutai, estat):** Inicialment, el bloc està en repòs sobre una superfície horitzontal. Per tant, la seva energia cinètica és zero. Pot tenir una mica d'energia potencial a causa de la seva posició relativa a un punt de referència, però això no és rellevant aquí ja que la superfície és horitzontal. L'estat final té el bloc girant amb energia cinètica (0,4 J) però sense canvis en l'energia potencial. * **Sense pèrdua d'energia:** Com que la superfície no té fricció, no hi ha dissipació d'energia a causa de la fricció. Per tant, segons el principi de conservació de l'energia, una vegada que el bloc assoleixi una velocitat angular de 2 rps i la seva energia cinètica esdevingui 0,4 J, mantindrà aquesta velocitat indefinidament sense cap entrada de treball addicional sempre que el sistema romangui sense fricció i tancat (és a dir, , no hi actuen forces externes).

Frequently asked questions (FAQs)
What is the probability of getting exactly 3 tails in 5 flips of a fair coin?
+
What is the angle in radians formed by 2π/3?
+
What is the average score of a class if the mean of 5 students is 85,
+
New questions in Mathematics
Students Ana Beatriz and Paula decided to register on a website with exercises to study for upcoming simulations, but to register on this website, they need to choose a password consisting of five characters, three numbers and two letters (capital letters). or lowercase). Letters and numbers can be in any position. They know that the alphabet is made up of twenty-six letters and that an uppercase letter differs from a lowercase letter in a password. What is the total number of possible passwords for registering on this site?
Use the digits of 1,9,2,3 to come up with all the numbers 98 and 95
Given the vectors: a = (2m – 3n, 4n – m) and b = (2, -3), find the values of m and n that make: a = 5 b.
(6.2x10^3)(3x10^-6)
(3x^(2) 9x 6)/(5x^(2)-20)
Suppose 56% of politicians are lawyers if a random sample of size 564 is selected, what is the probability that the proportion of politicians who are lawyers will differ from the total politicians proportions buy more than 4% round your answer to four decimal places
Equivalent expression of the sequence (3n-4)-(n-2)
Determine the minimum degree that an algebraic equation can assume knowing that it admits 2 as a double root and -i as a triple root
If 0101, what is the binary representation of the 4x16 decoder output?
Prove that it is not possible to arrange the integers 1 to 240 in a table with 15 rows and 16 columns in such a way that the sum of the numbers in each of the columns is the same.
The average number of babies born at a hospital is 6 per hour. What is the probability that three babies are born during a particular 1 hour period?
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
During a fishing trip Alex notices that the height h of the tide (in metres) is given by h=1−(1/2)*cos(πt/6) where t is measued in hours from the start of the trip. (a) Enter the exact value of h at the start of the trip in the box below.
Solve the equation: sin(2x) = 0.35 Where 0° ≤ x ≤ 360°. Give your answers to 1 d.p.
In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?
prove that for sets SS, AA, BB, and CC, where AA, BB, and CC are subsets of SS, the following equality holds: (A−B)−C=(A−C)−(B−C)
Square root of 169 with steps
Find the orthogonal projection of a point A = (1, 2, -1) onto a line passing through the points Pi = (0, 1, 1) and P2 = (1, 2, 3).
3(x-4)=156
An export company grants a bonus of $100,000 pesos to distribute among three of its best employees, so that the first receives double the second and the latter receives triple the third. How much did each person receive?