Question

Calculate the work required so that a block of mass 5 kg initially at rest and placed on a horizontal frictionless surface, tied by a rope 20 cm long fixed at the other end, begins to rotate until it reaches a speed angular of 2 rps. Do you need to add more work to maintain this speed? Justify your answer by applying the principle of conservation of energy.

67

likes
335 views

Answer to a math question Calculate the work required so that a block of mass 5 kg initially at rest and placed on a horizontal frictionless surface, tied by a rope 20 cm long fixed at the other end, begins to rotate until it reaches a speed angular of 2 rps. Do you need to add more work to maintain this speed? Justify your answer by applying the principle of conservation of energy.

Expert avatar
Hester
4.8
115 Answers
## Treball necessari per girar el bloc Podem analitzar aquest problema utilitzant els conceptes d'inèrcia rotacional, energia cinètica i principi de conservació de l'energia. **Donat:** * Massa del bloc (m) = 5 kg * Longitud de la corda (L) = 20 cm = 0,2 m (convertit a metres) * Velocitat angular final (ω_f) = 2 rad/s **Càlculs:** 1. **Moment d'inèrcia (I):** Com que el bloc gira al voltant d'un extrem de la corda, actua com una massa puntual a l'extrem d'una vareta. El moment d'inèrcia (I) d'aquest sistema és: I = mL^2 I = (5 kg) * (0,2 m)^2 I = 0,2 kgm^2 2. **Energia cinètica (KE):** Un cop el bloc comença a girar, guanya energia cinètica. L'energia cinètica d'un objecte en rotació és: KE = 1/2 * I * ω_f^2 KE = 1/2 * (0,2 kgm^2) * (2 rad/s)^2 KE = 0,4 J 3. **Treball fet (W):** Suposant que no hi ha pèrdua d'energia per fricció, el treball realitzat (W) per fer girar el bloc és igual a l'energia cinètica final guanyada. W = KE W = 0,4 J ## Mantenint la velocitat **No es requereix cap treball addicional per mantenir la velocitat angular de 2 rps un cop aconseguit.** Heus aquí per què, basant-nos en el principi de conservació de l'energia: * **Conservació de l'energia mecànica:** Aquest principi estableix que l'energia mecànica total (energia cinètica + energia potencial) en un sistema tancat es manté constant. * **Inicial i finalの状態 (joutai, estat):** Inicialment, el bloc està en repòs sobre una superfície horitzontal. Per tant, la seva energia cinètica és zero. Pot tenir una mica d'energia potencial a causa de la seva posició relativa a un punt de referència, però això no és rellevant aquí ja que la superfície és horitzontal. L'estat final té el bloc girant amb energia cinètica (0,4 J) però sense canvis en l'energia potencial. * **Sense pèrdua d'energia:** Com que la superfície no té fricció, no hi ha dissipació d'energia a causa de la fricció. Per tant, segons el principi de conservació de l'energia, una vegada que el bloc assoleixi una velocitat angular de 2 rps i la seva energia cinètica esdevingui 0,4 J, mantindrà aquesta velocitat indefinidament sense cap entrada de treball addicional sempre que el sistema romangui sense fricció i tancat (és a dir, , no hi actuen forces externes).

Frequently asked questions (FAQs)
What is the equation of a hyperbola with center at (0,0), horizontal axis, vertices at (-3,0) and (3,0), and foci at (-5,0) and (5,0)?
+
What is the length of the altitude of a triangle, given the base length is 10 units and the corresponding height is 8 units?
+
Math question: In a triangle, if side a = 12, side b = 16, and angle C = 63 degrees, find side c using the Law of Sines.
+
New questions in Mathematics
A normally distributed population has a mean of 118 with a standard deviation of 18. What score separates the lowest 72% of the distribution from the rest of the scores?
What is the coefficient of elasticity of the material that must be placed on the heel of the 10 cm high clog, with a base area of 2 cm² so that it deforms only 2 cm when the force on it will be a maximum of 600 N.
Kayla has $8,836.00 in her savings account. The bank gives Kayla 5%of the amount of money in account as a customer bonus. What amount of money does the bank give Kayla? Justify your answer on a 6th grade level.
Determine the absolute extrema of the function 𝑓(𝑥)=𝑥3−18𝑥2 96𝑥 , on the interval [1,10]
6. Among 100 of products there are 20 rejects. We will randomly select 10 of products. The random variable X indicates the number of rejects among the selected products. Determine its distribution.
4x567
(2x+5)^3+(x-3)(x+3)
Divide 22 by 5 solve it by array and an area model
If the midpoint of point A on the x=3 line and point B on the y=-2 line is C(-2,0), what is the sum of the ordinate of point A and the abscissa of point B?
Find each coefficient described. Coefficient of u^2 in expansion of (u - 3)^3
2.380× (1+0.05) / 0.95−0.05
You want to study incomes in a large city. You take a simple random sample of 5012 households and find that the distribution of household incomes is skewed right. If you calculate the mean of the 5012 household incomes will the distribution of mean scores be skewed right as well? Hint: this involves the Central Limit Theorem.
Take the limit of (sin(x-4))/(tan(x^2 - 16) as x approaches 4.
5x+13+7x-10=99
Let x be an integer. Prove that x^2 is even if and only if is divisible by 4.
In an economy with C= 10+0.8 Yd ; I= 20+0.1Y ; G= 100 ; X= 20 ; M=10+0.2Y ; T=-10+0.2Y and R= 10, when knew that Yd= Y-T+R. How much is the budget? A. -23.18 B. -28.13 C. -13.28 D. -32.18
Find the equation of a straight line that has slope 3 and passes through the point of (1, 7) . Write the equation of the line in general forms
Perform operations with the polynomials P(x) = x3 and Q(x) = 2x2 + x – 3x3 : a) P(x) - Q(x)
The average undergraduate cost per tuition, fees, room, and board for all institutions last year was $26,025. A random sample of 40 institutions of higher learning this year indicated that the mean tuition, fees, room, and board for the sample was $27,690, and the population standard deviation is $5492. At the 0.05 level of significance, is there sufficient evidence that the cost has increased? (Remember to follow the steps in hypothesis testing)
Marc, Jean and Michelle have traveled a lot. Marc drove twice as much as Jean, but it was Michelle who drove the most with 100km more than Marc. They respected their objective of not exceeding 1350km of distance. How far did John drive?