Question

Double integrals are part of the fundamental concepts of Differential and Integral Calculus when we are interested in working with spatial notions of volumes or even surface areas. Based on this concept, judge the following information: I. To calculate a double integral in a rectangular region, we proceed with the use of dodecahedrons to approximate the volume of a surface. II. The gradient vector is used to calculate iterated integrals. III. The surface volume is approximated by the Riemann sum limit for functions of two variables. What is stated in:

192

likes
960 views

Answer to a math question Double integrals are part of the fundamental concepts of Differential and Integral Calculus when we are interested in working with spatial notions of volumes or even surface areas. Based on this concept, judge the following information: I. To calculate a double integral in a rectangular region, we proceed with the use of dodecahedrons to approximate the volume of a surface. II. The gradient vector is used to calculate iterated integrals. III. The surface volume is approximated by the Riemann sum limit for functions of two variables. What is stated in:

Expert avatar
Bud
4.6
97 Answers
As afirmações fornecidas referem-se a conceitos de cálculo multivariável, particularmente no que diz respeito a integrais duplas e suas aplicações. Vamos avaliar cada afirmação: I. Para calcular uma integral dupla em uma região retangular, não usamos dodecaedros. Integrais duplas são usadas para calcular volumes sob superfícies e são aproximadas pela soma dos volumes de prismas retangulares (ou às vezes cilindros em coordenadas polares) no processo limite, não de dodecaedros. Esta afirmação está incorreta. II. O vetor gradiente é um vetor de derivadas parciais que aponta na direção da maior taxa de aumento de uma função. Não é usado diretamente para calcular integrais iteradas. Integrais iteradas são geralmente calculadas usando antiderivadas em relação a uma variável de cada vez. Esta afirmação está incorreta. III. O volume da superfície, mais precisamente referido como o volume sob uma superfície, é de fato aproximado pelo limite da soma de Riemann para funções de duas variáveis. No contexto das integrais duplas, à medida que o número de subdivisões se aproxima do infinito, a soma de Riemann se aproxima do volume exato sob a superfície de uma determinada região. Esta afirmação está correta. Com base nas informações fornecidas, apenas a Afirmação III está correta. As afirmações I e II estão incorretas.

Frequently asked questions (FAQs)
What is the formula to find the area of a triangle, where the base is 10 units and the height is 8 units?
+
Question: What is the domain of the function f(x) = √(x-3) + 2?
+
What is the average monthly rainfall in inches for the year 2020 recorded at a weather station in New York City?
+
New questions in Mathematics
A=m/2-t isolate t
Find the measures of the sides of ∆KPL and classify each triangle by its sides k (-2,-6), p (-4,0), l (3,-1)
4X^2 25
4x-3y=5;x+2y=4
If f(x,y)=6xy^2+3y^3 find (∫3,-2) f(x,y)dx.
The equation of the straight line that passes through the coordinate point (2,5) and is parallel to the straight line with equation x 2y 9 = 0 is
find x in the equation 2x-4=6
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
determine the polynomial F of degree 2 that interpolates. f at points (0;1) (2;5) (4;6). calculate F(0.8). Note: Using the polynomial expression with difference operator.
show step by step simplification: (¬𝑑∨((¬b∧c)∨(b∧¬c)))∧((𝑎 ∧ 𝑏) ∨ (¬𝑎 ∧ ¬𝑏))∧(¬𝑐∨((¬𝑑∧𝑎)∨(𝑑∧¬𝑎)))
Solve the following equation for x in exact form and then find the value to the nearest hundredths (make sure to show your work): 5e3x – 3 = 25
The function h(t)=-5t^2+20t+60 models the height in meters of a ball t seconds after it’s thrown . Which describe the intercepts and vertex of this function
Determine the increase of the function y=4x−5 when the argument changes from x1=2 to x2=3
If the regression equation is given by 4x –y + 5 = 0, then the slope of regression line of y on x is
A popular cell phone family plan provides 1500 minutes. It charges 89.99/month for the first 2 lines and 9.99 for every line after that. Unlimited text messages for all phone lines costs $30.00/month, and Internet costs $10.00/month per phone line. If a family with a $200 monthly budget buys this plan and signs up for unlimited text messaging and Internet on each phone line, how many cell phone lines can they afford? Use an inequality to solve this problem. Graph your solution on the number line and explain the meaning of your graph in a sentence.
Find the zero of the linear function 8x + 24 = 0
The mean of 4 numbers is 5 and the mean of 3 different numbers is 12. What is the mean of the 7 numbers together? Produce an algebraic solution. Guess and check is acceptable.
A rectangular swimming pool has a length of 14 feet, a width of 26 feet and a depth of 5 feet. Round answers to the nearest hundredth as needed. (a) How many cubic feet of water can the pool hold? cubic feet (b) The manufacturer suggests filling the pool to 95% capacity. How many cubic feet of water is this? cubic feet
97,210 ➗ 82 division
Find the number of liters of water needed to reduce 9 liters of lotion. shave containing 50% alcohol to a lotion containing 30% alcohol.