Question

Double integrals are part of the fundamental concepts of Differential and Integral Calculus when we are interested in working with spatial notions of volumes or even surface areas. Based on this concept, judge the following information: I. To calculate a double integral in a rectangular region, we proceed with the use of dodecahedrons to approximate the volume of a surface. II. The gradient vector is used to calculate iterated integrals. III. The surface volume is approximated by the Riemann sum limit for functions of two variables. What is stated in:

192

likes
960 views

Answer to a math question Double integrals are part of the fundamental concepts of Differential and Integral Calculus when we are interested in working with spatial notions of volumes or even surface areas. Based on this concept, judge the following information: I. To calculate a double integral in a rectangular region, we proceed with the use of dodecahedrons to approximate the volume of a surface. II. The gradient vector is used to calculate iterated integrals. III. The surface volume is approximated by the Riemann sum limit for functions of two variables. What is stated in:

Expert avatar
Bud
4.6
97 Answers
As afirmações fornecidas referem-se a conceitos de cálculo multivariável, particularmente no que diz respeito a integrais duplas e suas aplicações. Vamos avaliar cada afirmação: I. Para calcular uma integral dupla em uma região retangular, não usamos dodecaedros. Integrais duplas são usadas para calcular volumes sob superfícies e são aproximadas pela soma dos volumes de prismas retangulares (ou às vezes cilindros em coordenadas polares) no processo limite, não de dodecaedros. Esta afirmação está incorreta. II. O vetor gradiente é um vetor de derivadas parciais que aponta na direção da maior taxa de aumento de uma função. Não é usado diretamente para calcular integrais iteradas. Integrais iteradas são geralmente calculadas usando antiderivadas em relação a uma variável de cada vez. Esta afirmação está incorreta. III. O volume da superfície, mais precisamente referido como o volume sob uma superfície, é de fato aproximado pelo limite da soma de Riemann para funções de duas variáveis. No contexto das integrais duplas, à medida que o número de subdivisões se aproxima do infinito, a soma de Riemann se aproxima do volume exato sob a superfície de uma determinada região. Esta afirmação está correta. Com base nas informações fornecidas, apenas a Afirmação III está correta. As afirmações I e II estão incorretas.

Frequently asked questions (FAQs)
What is the volume of a rectangular prism with length 5 cm, width 8 cm, and height 3 cm?
+
Find the integral of ∫(2x^3 + 5√x + 1) dx using standard formulas.
+
What is the derivative of ∫(4x^3 + 2x - 3) dx with respect to x?
+
New questions in Mathematics
-11+29-18
58+861-87
A brass cube with an edge of 3 cm at 40 °C increased its volume to 27.12 cm3. What is the final temperature that achieves this increase?
The data set (75, 85, 58, 72, 70, 75) is a random sample from the normal distribution No(µ, σ). Determine a 95% two-sided confidence interval for the mean µ .
(2b) to the 1/4th power. Write the expression in radical form.
prove that if n odd integer then n^2+5 is even
Let r: x - y 5 = 0. Determine a general equation of the line s parallel to the line r, which forms an isosceles triangle with area 8 with the line x = 5 and the Ox axis.
The cost of unleaded gasoline in the Bay Area once followed an unknown distribution with a mean of $4.59 and a standard deviation of $0.10. Sixteen gas stations from the Bay Area are randomly chosen. We are interested in the average cost of gasoline for the 16 gas stations. 84. Find the probability that the average price for 30 gas stations is less than $4.55. a 0.6554 b 0.3446 c 0.0142 d 0.9858 e 0
A storage maker price is $2.50 per square feet. Find the price of a custom shed 4 yards long, and 5yards wide and 8 feet tall
Estimate the quotient for 3.24 ÷ 82
(2m+3)(4m+3)=0
Calculate the difference between 407 and 27
Let X be a discrete random variable such that E(X)=3 and V(X)=5. Let 𝑌 = 2𝑋^2 − 3𝑋. Determine E(Y).
48 kg of 30% sulfuric acid in a mixture of 10% and 40% sulfuric acid arose. How many kilograms were each of the original solutions?
A person runs 175 yards per minute write a variable that represents the relationship between time and distance
0<x<2π aralığındaki f(x)=x÷2 fonksiyonunun 0 < x < 4π için grafiğini çiziniz ve 0<x<2n için Fourier seri dönüşümünü gerçekleştiriniz.
8. Measurement Jillian measured the distance around a small fish pond to be 27 yards. What would be a good estimate of the distance across the pond: 14 yards, 9 yards, or 7 yards? Explain how you decided.
the length of the fenced in area is to be 5 ft greater than the width and the total amount of fencing to be used is 89 ft find the width and length
Dano forgot his computer password. The password was four characters long. Dano remembered only three characters: 3, g, N. The last character was one of the numbers 3, 5, 7, 9. How many possible expansions are there for Dano's password?
A plant found at the bottom of a lake doubles in size every 10 days. Yeah It is known that in 300 days it has covered the entire lake, indicate how many days it will take to cover the entire lake four similar plants.