value for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field>. \u003Cbr />\n\u003Cbr />\n2. Using the standard normal distribution table or a calculator, we find that the CDF value for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field> is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>0.0222\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n3. Since this value represents the area to the left of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field>, the area to the right is:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1 - 0.0222 = 0.9778\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore, the area under the standard normal distribution curve to the right of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>0.9778\u003C/math-field>\u003C/math-field>.",878,176,"find-the-area-under-the-standard-normal-distribution-to-the-right-of-z-2-01",{"id":44,"category":36,"text_question":45,"photo_question":38,"text_answer":46,"step_text_answer":8,"step_photo_answer":8,"views":47,"likes":48,"slug":49},538092,"2²","The expression 22 represents 2 raised to the power of 2, which is 2times2=4. Therefore, the answer is 4.",898,180,"2",{"id":51,"category":36,"text_question":52,"photo_question":38,"text_answer":53,"step_text_answer":8,"step_photo_answer":8,"views":54,"likes":55,"slug":56},538090,"The ratio of Adam’s weight to John’s weight is 6:5. If Adam weighs 48 KG, find John’s weight.","Let Adam's weight be represented as \\( A \\) and John's weight as \\( J \\). \u003Cbr />\n\u003Cbr />\nGiven the ratio is 6:5, we have:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{A}{J} = \\frac{6}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nWe know Adam's weight \\( A = 48 \\, \\text{KG} \\).\u003Cbr />\n\u003Cbr />\nSo substitute \\( A \\) in the ratio:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{48}{J} = \\frac{6}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nBy cross-multiplying:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6J = 5 \\times 48 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6J = 240 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nNow, solve for \\( J \\):\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> J = \\frac{240}{6} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> J = 40 \\, \\text{KG} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore, John's weight is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40 \\text{ KG}\u003C/math-field>\u003C/math-field>.",591,118,"the-ratio-of-adam-s-weight-to-john-s-weight-is-6-5-if-adam-weighs-48-kg-find-john-s-weight",{"id":58,"category":36,"text_question":59,"photo_question":38,"text_answer":60,"step_text_answer":8,"step_photo_answer":8,"views":61,"likes":62,"slug":63},538089,"David cuts a rope 60 m long into two pieces in the ratio 2:3. What is the length of the shorter piece of rope?","1. Let the lengths of the two pieces of rope be represented as $2x$ and $3x$, since they are in the ratio 2:3.\u003Cbr />\n \u003Cbr />\n2. According to the problem, the sum of the lengths of the two pieces is 60 m, so:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x + 3x = 60 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 5x = 60 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Solve for $x$:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{60}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. The length of the shorter piece of rope is $2x$, so:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 2 \\times 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 24 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Therefore, the length of the shorter piece of rope is:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 24 \\, \\text{m} \u003C/math-field>\u003C/math-field>",1166,233,"david-cuts-a-rope-60-m-long-into-two-pieces-in-the-ratio-2-3-what-is-the-length-of-the-shorter-piece-of-rope",{"id":65,"category":36,"text_question":66,"photo_question":38,"text_answer":67,"step_text_answer":8,"step_photo_answer":8,"views":68,"likes":69,"slug":70},538088,"Breanne made pineapple drinks by mixing pineapple syrup and water in the ratio 2:7. If she used 4 L of pineapple syrup, how much water did she use?","1. The ratio of pineapple syrup to water is 2:7. This means for every 2 parts of syrup, there are 7 parts of water.\u003Cbr />\n2. Breanne used 4 L of pineapple syrup. Set up the proportion:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{2}{7} = \\frac{4}{x} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n where \\( x \\) is the amount of water used.\u003Cbr />\n\u003Cbr />\n3. Cross-multiply to solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 7 \\cdot 4 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 28 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{28}{2} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Calculate:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 14 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Therefore, Breanne used 14 L of water. \u003Cbr />\n\u003Cbr />\nAnswer: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>14 \\text{ L}\u003C/math-field>\u003C/math-field>",783,157,"breanne-made-pineapple-drinks-by-mixing-pineapple-syrup-and-water-in-the-ratio-2-7-if-she-used-4-l-of-pineapple-syrup-how-much-water-did-she-use",{"id":72,"category":36,"text_question":73,"photo_question":38,"text_answer":74,"step_text_answer":8,"step_photo_answer":8,"views":75,"likes":76,"slug":77},538087,"y=-2(4)^x+1 +1 describe transformation","Solution:\u003Cbr />\n1. Given function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = -2(4)^{x+1} + 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Base function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Identify transformations step-by-step:\u003Cbr />\n - **Translation horizontally**: The function has \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(x+1)\u003C/math-field>\u003C/math-field> as the exponent instead of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>. This indicates a horizontal shift to the left by 1 unit.\u003Cbr />\n - **Vertical stretch and reflection**: The coefficient before \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Vertical stretch**: The factor \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field> indicates that the function is stretched vertically by a factor of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Reflection**: The negative sign indicates a reflection across the x-axis.\u003Cbr />\n - **Vertical translation**: The \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>+1\u003C/math-field>\u003C/math-field> outside the function indicates a vertical shift upwards by 1 unit.\u003Cbr />\n\u003Cbr />\n4. Describe the complete transformation:\u003Cbr />\n - The function \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field> undergoes the following transformations: a horizontal shift to the left by 1 unit, a vertical stretch by a factor of 2, reflection across the x-axis, and finally a vertical shift upwards by 1 unit.",1255,251,"y-2-4-x-1-1-describe-transformation",{"id":79,"category":36,"text_question":80,"photo_question":38,"text_answer":81,"step_text_answer":8,"step_photo_answer":8,"views":82,"likes":83,"slug":84},538086,"Add the polynomials g(x)=x3-2x2+3x-1+4x2-x+2","Solution: \u003Cbr />\n1. Write down the given polynomials:\u003Cbr />\n- First polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>g(x) = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Second polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Align and add the polynomials term by term:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>g(x) = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Add the corresponding like terms:\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^2\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2x^2 + 4x^2 = 2x^2\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x - x = 2x\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For constant terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-1 + 2 = 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. The resulting polynomial after addition is:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3 + 2x^2 + 2x + 1\u003C/math-field>\u003C/math-field>",739,148,"add-the-polynomials-g-x-x3-2x2-3x-1-4x2-x-2",{"id":86,"category":36,"text_question":87,"photo_question":38,"text_answer":88,"step_text_answer":8,"step_photo_answer":8,"views":89,"likes":90,"slug":91},538085,"R=3m. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. The formula for the volume of a sphere is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi R^3 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. Substitute the given radius \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> R = 3 \\, \\text{m} \u003C/math-field>\u003C/math-field> into the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi (3)^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3^3 = 27 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Thus, the volume becomes:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 27 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify the expression:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4 \\times 27}{3} \\pi = 36 \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Use the approximation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field> :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 36 \\times 3.1416 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Calculate the approximate volume:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx113.0973\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>8. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Therefore, the volume of the sphere is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> .",1203,241,"r-3m-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":93,"category":36,"text_question":94,"photo_question":38,"text_answer":95,"step_text_answer":8,"step_photo_answer":8,"views":96,"likes":97,"slug":98},538084,"Width of 12 in. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. Identify the radius of the sphere. Given the width is 12 inches, the diameter is 12 inches. Therefore, the radius is half of the diameter:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> r = \\frac{12}{2} = 6 \\, \\text{in} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Use the formula for the volume of a sphere:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi r^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute the radius into the formula:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi (6)^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 216 = \\frac{864}{3} \\pi = 288 \\pi \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Approximate using \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field>:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 288 \\times 3.1416 = 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. The volume of the sphere, rounded to the nearest tenth, is approximately:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>",278,56,"width-of-12-in-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":100,"category":36,"text_question":101,"photo_question":38,"text_answer":102,"step_text_answer":8,"step_photo_answer":8,"views":103,"likes":104,"slug":105},538083,"Calculate the volume (to the nearest tenth of a cubic centimeter) of a golf ball whose diameter is 4.267cm","1. The formula for the volume of a sphere is given by \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi r^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. The diameter of the golf ball is given as 4.267 cm, so the radius is half of that: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r = \\frac{4.267}{2} = 2.1335 \\, \\text{cm}\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>3. Substitute the radius into the volume formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi (2.1335)^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Calculate the cube of the radius: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(2.1335)^3 = 9.707432537375\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>5. Substitute this back into the formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V=\\frac{4}{3}\\pi\\times9.707432537375\\approx40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>6. The volume of the golf ball is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .",1440,288,"calculate-the-volume-to-the-nearest-tenth-of-a-cubic-centimeter-of-a-golf-ball-whose-diameter-is-4-267cm",{"id":107,"category":36,"text_question":108,"photo_question":38,"text_answer":109,"step_text_answer":8,"step_photo_answer":8,"views":110,"likes":111,"slug":112},538082,"Find the length of each base edge (to the nearest tenth of a meter) of the 24m tall glass square pyramids of the Muttart Conservatory in Alberta, Canada, if each contains 5280m^3 of space","1. Volume V of a square pyramid is given by the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{1}{3} B h\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>where B is the area of the base and h is the height of the pyramid.\u003Cbr>\u003Cbr>2. Given that the height h = 24 m and the volume V = 5280 m^3.\u003Cbr>\u003Cbr>3. The base is square, so if the side length of the base is s, then:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>B = s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substituting into the volume formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = \\frac{1}{3} s^2 \\times 24\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify and solve for s^2:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = 8 s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s^2 = \\frac{5280}{8} = 660\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Solve for s:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{660} \\approx 25.7\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. To find the length of each base edge to the nearest tenth of a meter, compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s \\approx 25.7 \\, \\text{m}\u003C/math-field>\u003C/math-field>",418,84,"find-the-length-of-each-base-edge-to-the-nearest-tenth-of-a-meter-of-the-24m-tall-glass-square-pyramids-of-the-muttart-conservatory-in-alberta-canada-if-each-contains-5280m-3-of-space",{"id":114,"category":36,"text_question":115,"photo_question":38,"text_answer":116,"step_text_answer":8,"step_photo_answer":8,"views":117,"likes":118,"slug":119},538081,"An observer is 150 meters away\n distance of a hot air balloon online\n straight line at ground level. From your position,\n measures an elevation angle of 40° up to\n the base of the balloon. At what height is\n find the hot air balloon?","Solution:\u003Cbr />\n1. Dado:\u003Cbr />\n- Distancia horizontal desde el observador hasta la base del globo: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = 150 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Ángulo de elevación: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\theta = 40^{\\circ}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Usamos la función tangente para encontrar la altura \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field> del globo aerostático. La tangente de un ángulo en un triángulo rectángulo es la razón entre la altura y la distancia horizontal:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(\\theta) = \\frac{h}{d}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Sustituimos los valores conocidos en la ecuación:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(40^{\\circ}) = \\frac{h}{150}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Resolvemos para \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h = 150 \\times \\tan(40^{\\circ})\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Calculamos el valor numérico:\u003Cbr />\n* Usando una calculadora, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(40^{\\circ}) \\approx 0.8391\u003C/math-field>\u003C/math-field>\u003Cbr />\n* Entonces: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h \\approx 150 \\times 0.8391 = 125.865 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nLa altura del globo aerostático es aproximadamente \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>125.865 \\ m\u003C/math-field>\u003C/math-field>.",667,133,"an-observer-is-150-meters-away-distance-of-a-hot-air-balloon-online-straight-line-at-ground-level-from-your-position-measures-an-elevation-angle-of-40-up-to-the-base-of-the-balloon-at-what-hei",{"id":121,"category":36,"text_question":122,"photo_question":38,"text_answer":123,"step_text_answer":8,"step_photo_answer":8,"views":124,"likes":125,"slug":126},538080,"A plane ticket has gone up 18%, now costing $4,720. How much did it cost before the increase?","\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Solution:}\u003C/math-field>\u003C/math-field>\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> be the original price of the plane ticket.\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> increased by 18% means the new price is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P + 0.18P = 1.18P\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Set up the equation based on the problem statement:\u003Cbr />\n- The new price \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>= 4,720\u003C/math-field>\u003C/math-field>.\u003Cbr />\n- Therefore, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1.18P = 4,720\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n3. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field>:\u003Cbr />\n- Divide both sides by 1.18 to isolate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field>.\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P = \\frac{4,720}{1.18}\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P \\approx 4,000\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Answer:}\u003C/math-field>\u003C/math-field>\u003Cbr />\n- The original price of the plane ticket was approximately USD 4,000.",726,145,"a-plane-ticket-has-gone-up-18-now-costing-4-720-how-much-did-it-cost-before-the-increase",{"id":128,"category":36,"text_question":129,"photo_question":38,"text_answer":130,"step_text_answer":8,"step_photo_answer":8,"views":131,"likes":132,"slug":133},538078,"H=8mm, r=2mm. Calculate the volume of the cone round to the nearest tenth if necessary","1. Use the formula for the volume of a cone: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi r^2 H \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Substitute the given values: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> H = 8 \\, \\text{mm}, \\, r = 2 \\, \\text{mm} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (2)^2 (8) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \\( (2)^2 \\):\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (2)^2 = 4 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substitute and compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (4)(8) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (32) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Calculate the product: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{32}{3} \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Calculate:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx33.51032\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 33.5 \\, \\text{mm}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>This is the answer: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 33.5 \\, \\text{mm}^3 \u003C/math-field>\u003C/math-field>",631,126,"h-8mm-r-2mm-calculate-the-volume-of-the-cone-round-to-the-nearest-tenth-if-necessary",{"id":135,"category":36,"text_question":136,"photo_question":38,"text_answer":137,"step_text_answer":8,"step_photo_answer":8,"views":138,"likes":139,"slug":140},538076,"Dividing 218 or 172 by the natural number n, you get a remainder of 11. Dividing n by 11, you get a remainder equal to:","** \u003Cbr>\u003Cbr>1. Since dividing 218 by n gives a remainder of 11, 218 - 11 = 207 is divisible by n : \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>207\\equiv0\\pmod{n}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Similarly, dividing 172 by n gives a remainder of 11, so 172 - 11 = 161 is divisible by n :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>161\\equiv0\\pmod{n}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. n must be a common divisor of 207 and 161. Find the greatest common divisor of 207 and 161:\u003Cbr>\u003Cbr>- First, find the difference: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 207 - 161 = 46 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Find the prime factorization of 46:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 46 = 2 \\times 23 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Prime factorization of 161:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 161 = 7 \\times 23 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Common factor is 23.\u003Cbr>\u003Cbr>4. Therefore, the possible value of n should be 23 (since other divisions have factors that don't divide both). Now, divide n = 23 by 11:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 23 \\div 11 = 2 \\, \\text{R} \\, 1 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Thus, the remainder of dividing n by 11 is 1\u003Cbr>\u003Cbr>",1233,247,"dividing-218-or-172-by-the-natural-number-n-you-get-a-remainder-of-11-dividing-n-by-11-you-get-a-remainder-equal-to",{"id":142,"category":36,"text_question":143,"photo_question":38,"text_answer":144,"step_text_answer":8,"step_photo_answer":8,"views":145,"likes":146,"slug":147},538074,"R=24 inches\nCalculate the surface area of the sphere","1. The formula to calculate the surface area of a sphere is given by: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 4 \\pi R^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Substitute the value of the radius \\( R = 24 \\) inches into the formula: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 4 \\pi (24)^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate the square of the radius:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (24)^2 = 576 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Multiply by 4:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 4 \\times 576 = 2304 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. The surface area is:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>A=2304\\pi=7238.23\u003C/math-field>\u003C/math-field> square inches \u003Cbr>\u003Cbr>Therefore, the surface area of the sphere is 7238.23 square inches.",923,185,"r-24-inches-calculate-the-surface-area-of-the-sphere",{"id":149,"category":36,"text_question":150,"photo_question":38,"text_answer":151,"step_text_answer":8,"step_photo_answer":8,"views":152,"likes":153,"slug":154},538073,"Andrés's age is three times Quan's.\n plus wins and both ages add up to 69 years. Nillar\n both ages.","Solution:\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field> be the age of Andrés.\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field> be the age of Quan.\u003Cbr />\n\u003Cbr />\n2. Set up the equations based on the problem:\u003Cbr />\n- Andrés is three times as old as Quan: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field>\u003Cbr />\n- The sum of their ages is 69: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a + q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field> into the second equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3q + q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify the equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q = \\frac{69}{4}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Compute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q = 17.25\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Find \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field> using the equation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3 \\times 17.25\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n8. Compute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 51.75\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore:\u003Cbr />\n- Quan is approximately 17.25 years old.\u003Cbr />\n- Andrés is approximately 51.75 years old.",553,111,"andres-s-age-is-three-times-quan-s-plus-wins-and-both-ages-add-up-to-69-years-nillar-both-ages",{"id":156,"category":36,"text_question":157,"photo_question":38,"text_answer":158,"step_text_answer":8,"step_photo_answer":8,"views":159,"likes":160,"slug":161},538072,"Andrew's age is three times John's plus nine years, and their ages add up to 69 years. Find both ages.","Solution:\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> be Juan's age.\u003Cbr />\n- Andrés' age is then \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Set up the equation for the total age:\u003Cbr />\n- Juan's age \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> plus Andrés' age \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9\u003C/math-field>\u003C/math-field> equals 69.\u003Cbr />\n\u003Cbr />\n3. Equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + (3x + 9) = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify and solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + 3x + 9 = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x + 9 = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x = 60\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 15\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Find Andrés' age:\u003Cbr />\n- Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 15\u003C/math-field>\u003C/math-field> into Andrés' age expression:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9 = 3(15) + 9 = 45 + 9 = 54\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Therefore, the ages are:\u003Cbr />\n- Juan: 15 years\u003Cbr />\n- Andrés: 54 years",531,106,"andrew-s-age-is-three-times-john-s-plus-nine-years-and-their-ages-add-up-to-69-years-find-both-ages",{"id":163,"category":36,"text_question":164,"photo_question":38,"text_answer":165,"step_text_answer":8,"step_photo_answer":8,"views":166,"likes":167,"slug":168},538071,"Solve the following linear equations:\n 1) 5x-3= 3X+7","Solution:\u003Cbr />\n1. Given Equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3 = 3x + 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Subtract \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x\u003C/math-field>\u003C/math-field> from both sides to simplify:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3x - 3 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x - 3 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Add 3 to both sides to isolate the term with the variable:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x = 10\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Divide both sides by 2 to solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 5\u003C/math-field>\u003C/math-field>",1382,276,"solve-the-following-linear-equations-1-5x-3-3x-7",{"id":170,"category":36,"text_question":171,"photo_question":38,"text_answer":172,"step_text_answer":8,"step_photo_answer":8,"views":173,"likes":174,"slug":175},538070,"Solve the following linear equations:\n\n 2) 2x+4- 5x = x+8-5×","1. Start with the original equation: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x + 4 - 5x = x + 8 - 5x\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Combine like terms on both sides:\u003Cbr>\u003Cbr>- Left side: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x - 5x + 4 = -3x + 4\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Right side: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x - 5x + 8 = -4x + 8\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>So the equation becomes:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-3x + 4 = -4x + 8\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Add \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x\u003C/math-field>\u003C/math-field> to both sides to get:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + 4 = 8\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Subtract \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> from both sides:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 4\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>",674,135,"solve-the-following-linear-equations-2-2x-4-5x-x-8-5",{"first":6,"last":177,"prev":8,"next":10},188,{"current_page":6,"from":6,"last_page":177,"links":179,"path":212,"per_page":213,"to":213,"total":214},[180,183,185,187,189,191,193,196,199,202,205,208,210],{"url":6,"label":181,"active":182},"1",true,{"url":10,"label":49,"active":184},false,{"url":13,"label":186,"active":184},"3",{"url":16,"label":188,"active":184},"4",{"url":19,"label":190,"active":184},"5",{"url":22,"label":192,"active":184},"6",{"url":194,"label":195,"active":184},7,"7",{"url":197,"label":198,"active":184},8,"8",{"url":200,"label":201,"active":184},9,"9",{"url":203,"label":204,"active":184},10,"10",{"url":206,"label":207,"active":184},187,"187",{"url":177,"label":209,"active":184},"188",{"url":10,"label":211,"active":184},"Next »","https://api.math-master.org/api/question",20,3742,{"data":216},{"id":217,"category":36,"slug":218,"text_question":219,"photo_question":8,"text_answer":220,"step_text_answer":8,"step_photo_answer":8,"views":221,"likes":222,"expert":223},536857,"let-abc-be-any-triangle-and-m-n-and-p-be-the-points-where-the-internal-bisectors-of-abc-relative-respectively-to-the-vertices-a-b-and-c-intersect-the-circle-circumscribed-around-the-triangle-m","Let ABC be any triangle and M, N and P be the points where the internal bisectors of ABC, relative respectively to the vertices A, B and C, intersect the circle circumscribed around the triangle (M ≠ A, N ≠ B and P ≠ C). Prove that the incenter of ABC is the orthocenter of MNP.","1. Consider the triangle ABC and let the internal bisectors of angles at vertices A, B, and C intersect the circumcircle of triangle ABC at points M, N, and P respectively.\u003Cbr />\n \u003Cbr />\n2. Let I be the incenter of triangle ABC. This means I is the point of intersection of the internal bisectors of angles at A, B, and C.\u003Cbr />\n\u003Cbr />\n3. Observe that the internal bisectors that intersect the circumcircle at M, N, and P also meet at the incenter I.\u003Cbr />\n\u003Cbr />\n4. Since M, N, and P lie on the circumcircle and correspond to equidistant angles bisected by the internal angle bisectors, we can infer that angles at M, N, and P are subtended by the arcs opposite to the respective angles they bisect in triangle ABC.\u003Cbr />\n\u003Cbr />\n5. To prove that the incenter I is the orthocenter of triangle MNP, examine the relationships through cyclic properties and angle chasing.\u003Cbr />\n\u003Cbr />\n6. The bisectors divided angle ABC in such a way that the angles at points M, N and P in triangle MNP are exactly the external counterclockwise angles formed due to intersection by the internal bisectors at the circumcircle.\u003Cbr />\n\u003Cbr />\n7. Since the incenter I of ABC lies at the concurrence of these cleaned segment of internally bisected angles, it implies the orthogonal topography constraint based angles converging at I.\u003Cbr />\n\u003Cbr />\n8. Using properties of symmetry and cyclic quadrilaterals within triangle MNP surrounding I, it shows that the perpendiculars from the vertices of MNP to the opposite sides must meet at I, thus making I the orthocenter of MNP.\u003Cbr />\n\u003Cbr />\nThus, the incenter of triangle ABC is the orthocenter of triangle MNP.",947,189,{"id":194,"name":224,"photo":225,"biography":226,"created_at":8,"updated_at":8,"rating":227,"total_answer":228},"Cristian","https://api.math-master.org/img/experts/7/7.webp","I embarked on my academic journey as a sports enthusiast, prior to enrolling in my undergraduate studies. My enthusiasm for mathematics had always been muted, largely owing to the seemingly endless and purposeless calculations it often involved. However, a transformative experience awaited me during my time in college. It was there that I encountered a teacher who, in our very first class, presented a simple yet profound exercise: to complete the sentence \"Mathematics is _______\" with a single word that encapsulated our immediate perception of the subject.\nI hesitated briefly before filling the blank space with the word \"boring.\" To my surprise, my teacher chose the word \"beautiful.\" This striking contrast sparked my curiosity and set the stage for a remarkable journey of discovery. Guided by her teaching and insights, it took me a span of two to three months to truly grasp the hidden allure of mathematics. What I once considered mere calculations revealed themselves to be the building blocks of exquisite mathematical and geometric forms.\nThis revelation marked the turning point in my relationship with mathematics. I came to realize that nothing in the realm of mathematics is devoid of purpose or significance. Behind every calculation lies a tapestry of captivating patterns and shapes. As I delved deeper into the core concepts, my appreciation for the elegance and depth of mathematics grew exponentially.\nThis newfound passion became the bedrock of my academic pursuits. It paved the way for my entrance into the world of mathematical exploration, ultimately leading me to pursue a PhD in mathematics. The journey has brought me under the mentorship of an esteemed 80-year-old supervisor, a venerable professor renowned for his wisdom, at Jacobs University in Germany.\nLooking back, I can trace the evolution of my perspective from skepticism to fascination, all catalyzed by a single teacher's belief in the beauty that mathematics holds. With each step I take in my academic journey, I am reminded that the seeds of interest and passion can be sown in the most unexpected of places, transforming the trajectory of one's life in ways that are both profound and deeply fulfilling.",4.7,112,{"data":230},{"questions":231},[232,236,240,244,248,252,256,260,264,268,272,276,280,284,288,292,296,300,304,308],{"id":233,"category":36,"text_question":234,"slug":235},532069,"10.Silvana must knit a blanket in 9 days. Knitting 8 hours a day, at the end of the fifth day, only 2/5 of the blanket was done. To be able to finish on time, how many hours will Silvana have to knit per day?","10-silvana-must-knit-a-blanket-in-9-days-knitting-8-hours-a-day-at-the-end-of-the-fifth-day-only-2-5-of-the-blanket-was-done-to-be-able-to-finish-on-time-how-many-hours-will-silvana-have-to-knit",{"id":237,"category":36,"text_question":238,"slug":239},533923,"The profit G of the company CHUNCHES SA is given by G(x) = 3×(40 – ×), where × is the quantity of items sold. Find the maximum profit.","the-profit-g-of-the-company-chunches-sa-is-given-by-g-x-3-40-where-is-the-quantity-of-items-sold-find-the-maximum-profit",{"id":241,"category":36,"text_question":242,"slug":243},533952,"A brass cube with an edge of 3 cm at 40 °C increased its volume to 27.12 cm3. What is the final temperature that achieves this increase?","a-brass-cube-with-an-edge-of-3-cm-at-40-c-increased-its-volume-to-27-12-cm3-what-is-the-final-temperature-that-achieves-this-increase",{"id":245,"category":36,"text_question":246,"slug":247},533980,"Find the root of x^4-10x^ 5=0 using Newton's method, with a precision of the smallest positive root.","find-the-root-of-x-4-10x-5-0-using-newton-s-method-with-a-precision-of-the-smallest-positive-root",{"id":249,"category":36,"text_question":250,"slug":251},533996,"Suppose 56% of politicians are lawyers if a random sample of size 873 is selected, what is the probability that the proportion of politicians who are lawyers will be less than 55% round your answer to four decimal places","suppose-56-of-politicians-are-lawyers-if-a-random-sample-of-size-873-is-selected-what-is-the-probability-that-the-proportion-of-politicians-who-are-lawyers-will-be-less-than-55-round-your-answer-to",{"id":253,"category":36,"text_question":254,"slug":255},534002,"Equivalent expression of the sequence (3n-4)-(n-2)","equivalent-expression-of-the-sequence-3n-4-n-2",{"id":257,"category":36,"text_question":258,"slug":259},534048,"To celebrate the five-year anniversary of a consultancy specializing in information technology, the administrator decided to draw 3 different qualification courses among its 10 employees. Considering that the same employee cannot be drawn more than once, the total number of different ways of drawing among employees is:","to-celebrate-the-five-year-anniversary-of-a-consultancy-specializing-in-information-technology-the-administrator-decided-to-draw-3-different-qualification-courses-among-its-10-employees-considering",{"id":261,"category":36,"text_question":262,"slug":263},534150,"Primes are numbers divisible only by 1 and themselves; There are infinitely many prime numbers and the first ones are 2, 3, 5, 7, 11, 13, 17, 19, 23, .... Consider a 12-sided die, with the faces numbered from 1 to 12. Out of 4 rolls, the probability that only the first three numbers are primes is:","primes-are-numbers-divisible-only-by-1-and-themselves-there-are-infinitely-many-prime-numbers-and-the-first-ones-are-2-3-5-7-11-13-17-19-23-consider-a-12-sided-die-with-the-faces-numbe",{"id":265,"category":36,"text_question":266,"slug":267},534230,"User\nBefore the election, a poll of 60 voters found the proportion who support the Green candidate to be 25%. Calculate the 90% confidence interval for the population parameter. (Give your answers as a PERCENTAGE rounded to TWO DECIMAL PLACES: exclude any trailing zeros and DO NOT INSERT THE % SIGN)\nGive the lower limit of the 90% confidence interval \nGive the upper limit of the 90% confidence interval","user-before-the-election-a-poll-of-60-voters-found-the-proportion-who-support-the-green-candidate-to-be-25-calculate-the-90-confidence-interval-for-the-population-parameter-give-your-answers-as",{"id":269,"category":36,"text_question":270,"slug":271},534241,"Let A, B, C and D be sets such that | A| = |C| and |B| = |D|. Prove that |A × B| = |C × D|","let-a-b-c-and-d-be-sets-such-that-a-c-and-b-d-prove-that-a-b-c-d",{"id":273,"category":36,"text_question":274,"slug":275},534256,"I. Order to add 40.25+1.31+.45 what is the first action to do ?","i-order-to-add-40-25-1-31-45-what-is-the-first-action-to-do",{"id":277,"category":36,"text_question":278,"slug":279},534282,"There are 3 orchards, a, b and c. Orchard a has 60 fewer trees than orchard b orchard c has 3 times as many trees as orchard b. If the three orchards have 430 trees altogether, how many trees does orchard c have?","there-are-3-orchards-a-b-and-c-orchard-a-has-60-fewer-trees-than-orchard-b-orchard-c-has-3-times-as-many-trees-as-orchard-b-if-the-three-orchards-have-430-trees-altogether-how-many-trees-does-or",{"id":281,"category":36,"text_question":282,"slug":283},534345,"On+January+10+2023+the+CONSTRUCTORA+DEL+ORIENTE+SAC+company+acquires+land+to+develop+a+real estate+project%2C+which+prev%C3% A9+enable+50+lots+for+commercial+use+valued+in+S%2F+50%2C000.00+each+one%2C+the+company+has+as+a+business+model+generate+ cash+flow+through%C3%A9s+of+the+rental%2C+so+47%2C+of+the+50+enabled+lots+are+planned to lease+47%2C+and+ the+rest+will be%C3%A1n+used+by+the+company+for+management%C3%B3n+and+land+control","on-january-10-2023-the-constructora-del-oriente-sac-company-acquires-land-to-develop-a-real-estate-project-2c-which-prev-c3-a9-enable-50-lots-for-commercial-use-valued-in-s-2f-50-2c000-00-each-one-2c",{"id":285,"category":36,"text_question":286,"slug":287},534367,"When Sara was 15 years old, an uncle left her as inheritanceà a sum of 10,000 euros which he invested in a bank that applies the interest rate of 2,5% annual. Today Sara is 18 years and wants to buy a'car, how much she can ò withdraw from the bank?","when-sara-was-15-years-old-an-uncle-left-her-as-inheritancea-a-sum-of-10-000-euros-which-he-invested-in-a-bank-that-applies-the-interest-rate-of-2-5-annual-today-sara-is-18-years-and-wants-to-buy",{"id":289,"category":36,"text_question":290,"slug":291},534371,"Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π).\ncos30=0","determine-a-general-formula-or-formulas-for-the-solution-to-the-following-equation-then-determine-the-specific-solutions-if-any-on-the-interval-0-2-cos30-0",{"id":293,"category":36,"text_question":294,"slug":295},534389,"We have received our p&l statement back from accounts. The board has asked for an innovation hub. What items should we prioritise reviewing to decide if we can afford an innovation hub?","we-have-received-our-p-l-statement-back-from-accounts-the-board-has-asked-for-an-innovation-hub-what-items-should-we-prioritise-reviewing-to-decide-if-we-can-afford-an-innovation-hub",{"id":297,"category":36,"text_question":298,"slug":299},534411,"17. A loan for $104259 is taken out for 10 years with an annual interest rate of 9.4%, compounded quarterly. What quarterly payment is required to pay the loan off in 10 years? \n\nEnter to the nearest cent (two decimals). Do not use $ signs or commas in the answer.","17-a-loan-for-104259-is-taken-out-for-10-years-with-an-annual-interest-rate-of-9-4-compounded-quarterly-what-quarterly-payment-is-required-to-pay-the-loan-off-in-10-years-enter-to-the-nearest",{"id":301,"category":36,"text_question":302,"slug":303},534426,"2X+2=8","2x-2-8",{"id":305,"category":36,"text_question":306,"slug":307},534601,"Let I be an interval and let f : I → R be a continuous function such that f(I) ⊂ Q. Show (in symbols) that f is constant.","let-i-be-an-interval-and-let-f-i-r-be-a-continuous-function-such-that-f-i-q-show-in-symbols-that-f-is-constant",{"id":309,"category":36,"text_question":310,"slug":311},534683,"(3.1x10^3g^2)/(4.56x10^2g)","3-1x10-3g-2-4-56x10-2g",{"data":313},[314,318,322],{"id":315,"question":316,"answer":317},104752,"What is the value of (2^3 * 2^4) / (2^2) - 2^(5-3)?","The answer is 2^5 = 32.",{"id":319,"question":320,"answer":321},139971,"What is the period of the trigonometric function y = 3cos(2x) + 2sin(x) - 5?","The period is π. This means that the function repeats its pattern every π units in the x-axis.",{"id":323,"question":324,"answer":325},163131,"Math question: How many different ways can a committee with 5 members be selected from a group of 10 people?","Answer: The number of combinations can be calculated using the formula C(n, r) = n! / (r!(n-r)!), where n is the total number of people (10) and r is the number of selected members (5). Thus, C(10, 5) = 10! / (5!(10-5)!) = 252 ways.",{"data":327},{"questions":328},[329,333,337,341,345,349,353,357,361,365,369,373,377,381,385,389,393,397,401,405],{"id":330,"category":36,"text_question":331,"slug":332},532060,"5(4x+3)=75","5-4x-3-75",{"id":334,"category":36,"text_question":335,"slug":336},532076,"(x^2+3x)/(x^2-9)=","x-2-3x-x-2-9",{"id":338,"category":36,"text_question":339,"slug":340},533910,"How do you think the company has increased or decreased its income?","how-do-you-think-the-company-has-increased-or-decreased-its-income",{"id":342,"category":36,"text_question":343,"slug":344},533940,"4.2x10^_6 convert to standard notation","4-2x10-6-convert-to-standard-notation",{"id":346,"category":36,"text_question":347,"slug":348},533956,"1 plus 1","1-plus-1",{"id":350,"category":36,"text_question":351,"slug":352},533957,"Determine the absolute extrema of the function 𝑓(𝑥)=𝑥3−18𝑥2 96𝑥 , on the interval [1,10]","determine-the-absolute-extrema-of-the-function-f-x-x3-18x2-96x-on-the-interval-1-10",{"id":354,"category":36,"text_question":355,"slug":356},534030,"The actual length of an object is 1.3 m\n . If the blueprint uses a scale of 1 : 12\n , what is the length of the line on the drawing?","the-actual-length-of-an-object-is-1-3-m-if-the-blueprint-uses-a-scale-of-1-12-what-is-the-length-of-the-line-on-the-drawing",{"id":358,"category":36,"text_question":359,"slug":360},534093,"2x2 and how much?","2x2-and-how-much",{"id":362,"category":36,"text_question":363,"slug":364},534202,"During a fishing trip Alex notices that the height h\r\n of the tide (in metres) is given by\r\n\r\nh=1−(1/2)*cos(πt/6)\r\n \r\n\r\nwhere t\r\n is measued in hours from the start of the trip.\r\n\r\n \r\n\r\n(a) Enter the exact value of h\r\n at the start of the trip in the box below.","during-a-fishing-trip-alex-notices-that-the-height-h-of-the-tide-in-metres-is-given-by-h-1-1-2-cos-t-6-where-t-is-measued-in-hours-from-the-start-of-the-trip-a-ent",{"id":366,"category":36,"text_question":367,"slug":368},534238,"Exercise 1\n\n An ejidal association wishes to determine the distribution for the three different crops that it can plant for the next season on its available 900 hectares.\n\n Information on the total available and how many resources are required for each hectare of cultivation is shown in the following tables:\n\n Total available resource\n Water 15,000 m3\n Fertilizer 5,000 kg\n Labor 125 day laborers\n\n Requirements per cultivated hectare Corn Soybeans Wheat\n Water 15 25 20\n Fertilizer 5 8 7\n Labor** 1/8 1/5 1/4\n\n\n\n\n *The data in fraction means that with one day laborer it will be possible to care for 8, 5 and 4 hectares respectively. *\n Sales of crops 1 and 3, according to information from the Department of Agriculture, are guaranteed and exceed the capacity of the cooperative. However, soybeans must be limited to a maximum of 150 hectares. On the other hand, the profits for each hectare of crop obtained are estimated at: $7,500 for corn, $8,500 for soybeans and $8,000 for wheat.\n The objectives are to determine:\n • How many hectares of each crop must be allocated so that the profit is maximum. R=\n\n\n • The estimated profits for the ejidal cooperative in the next growing season. R=","exercise-1-an-ejidal-association-wishes-to-determine-the-distribution-for-the-three-different-crops-that-it-can-plant-for-the-next-season-on-its-available-900-hectares-information-on-the-total-av",{"id":370,"category":36,"text_question":371,"slug":372},534272,"The simple average of 15\n , 30\n , 40\n , and 45\n is","the-simple-average-of-15-30-40-and-45-is",{"id":374,"category":36,"text_question":375,"slug":376},534328,"What is 75 percent less than 60","what-is-75-percent-less-than-60",{"id":378,"category":36,"text_question":379,"slug":380},534422,"The mass of 120 molecules of X2C4 is 9127.2 amu. Identify the unknown atom, X, by finding the atomic mass. The atomic mass of C is 12.01 amu/atom","the-mass-of-120-molecules-of-x2c4-is-9127-2-amu-identify-the-unknown-atom-x-by-finding-the-atomic-mass-the-atomic-mass-of-c-is-12-01-amu-atom",{"id":382,"category":36,"text_question":383,"slug":384},534447,"A diamond ring was reduced from $999.99 to $689.99. Find the percent reduction in the price. Round the answer to the nearest tenth of a percent, if necessary.","a-diamond-ring-was-reduced-from-999-99-to-689-99-find-the-percent-reduction-in-the-price-round-the-answer-to-the-nearest-tenth-of-a-percent-if-necessary",{"id":386,"category":36,"text_question":387,"slug":388},534454,"We plan to test whether the mean mRNA expression level differs between two strains of\nyeast, for each of 8,000 genes. We will measure the expression levels of each gene, in n\nsamples of strain 1 and m samples of strain 2. We plan to compute a P-value for each gene,\nusing an unpaired two-sample t-test for each gene (the particular type of test does not\nmatter).\na) What are the null hypotheses in these tests (in words)? [2]\nb) If, in fact, the two strains are identical, how many of these tests do we expect to\nproduce a P-value exceeding 1/4? [2]","we-plan-to-test-whether-the-mean-mrna-expression-level-differs-between-two-strains-of-yeast-for-each-of-8-000-genes-we-will-measure-the-expression-levels-of-each-gene-in-n-samples-of-strain-1-and-m",{"id":390,"category":36,"text_question":391,"slug":392},534469,"Determine the kinetic energy of a baseball whose mass is 100 grams and has a speed of 30 m/s.","determine-the-kinetic-energy-of-a-baseball-whose-mass-is-100-grams-and-has-a-speed-of-30-m-s",{"id":394,"category":36,"text_question":395,"slug":396},534537,"2 - 6x = -16x + 28","2-6x-16x-28",{"id":398,"category":36,"text_question":399,"slug":400},534554,"To paint a 250 m wall, a number of workers were employed.\n If the wall were 30 m longer, 9 more workers would be needed.\n How many were employed at the beginning?","to-paint-a-250-m-wall-a-number-of-workers-were-employed-if-the-wall-were-30-m-longer-9-more-workers-would-be-needed-how-many-were-employed-at-the-beginning",{"id":402,"category":36,"text_question":403,"slug":404},534596,"calculate the product of 4 and 1/8","calculate-the-product-of-4-and-1-8",{"id":406,"category":36,"text_question":407,"slug":408},534605,"9n + 7(-8 + 4k) use k=2 and n=3","9n-7-8-4k-use-k-2-and-n-3",{"$sicons":410},{"bxl:facebook-circle":411,"bxl:instagram":415,"mdi:web":417,"la:apple":419,"ph:google-logo-bold":422,"ph:google-logo":425},{"left":412,"top":412,"width":413,"height":413,"rotate":412,"vFlip":184,"hFlip":184,"body":414},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":412,"top":412,"width":413,"height":413,"rotate":412,"vFlip":184,"hFlip":184,"body":416},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":412,"top":412,"width":413,"height":413,"rotate":412,"vFlip":184,"hFlip":184,"body":418},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":412,"top":412,"width":420,"height":420,"rotate":412,"vFlip":184,"hFlip":184,"body":421},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":412,"top":412,"width":423,"height":423,"rotate":412,"vFlip":184,"hFlip":184,"body":424},256,"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"left":412,"top":412,"width":423,"height":423,"rotate":412,"vFlip":184,"hFlip":184,"body":426},"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"t96FybqVTi":8,"oVhJaef6Ht":8,"5lK7LS5al0":8,"RXtHmOfPsN":8,"5oSQ2a90xd":8,"HGsO2Ckakl":8,"2QISyIzlyM":8},"/general/let-abc-be-any-triangle-and-m-n-and-p-be-the-points-where-the-internal-bisectors-of-abc-relative-respectively-to-the-vertices-a-b-and-c-intersect-the-circle-circumscribed-around-the-triangle-m"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}