and N7,9?","Solution:\u003Cbr />\n1. Identify the coordinates of points L and N.\u003Cbr />\n * Point L: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x1,y1 = 1,3\u003C/math-field>\u003C/math-field>\u003Cbr />\n * Point N: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x2,y2 = 7,9\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Use the distance formula between two points \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x1,y1\u003C/math-field>\u003C/math-field> and \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x2,y2\u003C/math-field>\u003C/math-field>:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = \\sqrt{x2−x1^2 + y2−y1^2}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute the given coordinates into the distance formula:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = \\sqrt{7−1^2 + 9−3^2}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify the expression:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = \\sqrt{6^2 + 6^2}\u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = \\sqrt{36 + 36}\u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = \\sqrt{72}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Simplify further if possible:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = \\sqrt{36 \\cdot 2} = \\sqrt{36} \\cdot \\sqrt{2} = 6\\sqrt{2}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nResult:\u003Cbr />\n- The distance between L and N is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6\\sqrt{2}\u003C/math-field>\u003C/math-field>.",1009,202,"what-is-the-distance-between-line-segment-ln-with-endpoints-l-1-3-and-n-7-9",{"id":64,"category":49,"text_question":65,"photo_question":51,"text_answer":66,"step_text_answer":8,"step_photo_answer":8,"views":67,"likes":68,"slug":69},538008,"A circle is circumscribed and inscribed in a square of area 64cm. Calculate the area of the circular ring bounded by these two circles.","1. Given that the area of the square is 64 cm\\(^2\\), so the side length \\( s \\) of the square is given by:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> s^2 = 64 \\implies s = 8 \\, \\text{cm} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. The circumscribed circle has radius \\( R \\) equal to half the diagonal of the square, which is equal to the side length times the root of 2, \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> R = \\frac{8\\sqrt{2}}{2} = 4\\sqrt{2} \\, \\text{cm} \u003C/math-field>\u003C/math-field> \u003Cdiv>\u003Cbr>\u003Cbr>\u003C/div>2. The area of the circumscribed circle:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A_{\\text{circumscribed}} = \\pi (4\\sqrt{2})^2 = 32\\pi \\, \\text{cm}^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cspan style=\"font-size: 14.304px;\">2. The inscribed circle has radius \\( r \\) equal to half the side length of the square,\u003Cbr style=\"font-size: 14.304px;\">\u003Cbr style=\"font-size: 14.304px;\">\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r=\\frac{8}{2}=4\\text{cm}\u003C/math-field>\u003C/math-field>\u003Cspan style=\"font-size: 14.304px;\">\u003Cdiv style=\"font-size: 14.304px;\">\u003Cbr>\u003Cbr>\u003C/div>\u003Cspan style=\"font-size: 14.304px;\">2. The area of the inscribed circle:\u003Cbr style=\"font-size: 14.304px;\">\u003Cbr style=\"font-size: 14.304px;\">\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>A_{\\text{inscribed}}=\\pi(4)^2=16\\pi\\,\\text{cm}^2\u003C/math-field>\u003C/math-field>\u003Cspan style=\"font-size: 14.304px;\">\u003Cbr style=\"font-size: 14.304px;\">\u003Cbr style=\"font-size: 14.304px;\">3. The area of the ring:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A_{\\text{ring}} = A_{\\text{circumscribed}} - A_{\\text{inscribed}} = (32\\pi - 16\\pi) = 16\\pi \\, \\text{cm}^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cdiv>\u003Cbr>\u003Cbr>\u003C/div>\u003Cdiv>\u003Cbr>\u003Cbr>\u003C/div>\u003Cdiv>Answer: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>16\\pi\\operatorname{cm}^2\u003C/math-field>\u003C/math-field> \u003C/div>",1296,259,"a-circle-is-circumscribed-and-inscribed-in-a-square-of-area-64cm-calculate-the-area-of-the-circular-ring-bounded-by-these-two-circles",{"id":71,"category":49,"text_question":72,"photo_question":51,"text_answer":73,"step_text_answer":8,"step_photo_answer":8,"views":74,"likes":75,"slug":76},537996,"Y=2x+1\n Y=2x+9\n Solve","1. Set the two equations equal to each other since they both represent \\( Y \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x + 1 = 2x + 9 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Subtract \\( 2x \\) from both sides:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 1 = 9 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. The above statement is a contradiction, meaning no value of \\( x \\) satisfies it.\u003Cbr />\n\u003Cbr />\n4. Since \\( 2x + 1 \\) and \\( 2x + 9 \\) are equations of lines with the same slope but different y-intercepts, these lines are parallel and do not intersect.\u003Cbr />\n\u003Cbr />\n5. Therefore, there are no solutions to the system.",730,146,"y-2x-1-y-2x-9-solve",{"id":78,"category":49,"text_question":79,"photo_question":51,"text_answer":80,"step_text_answer":8,"step_photo_answer":8,"views":81,"likes":82,"slug":83},537939,"From 2010/11 to 2012/13 what is the percentage change in the total value of open tuition loans?","Solution:\u003Cbr />\n1. Let the total value of outstanding tuition fee loans in 2010/11 be \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V_{2010/11}\u003C/math-field>\u003C/math-field> and in 2012/13 be \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V_{2012/13}\u003C/math-field>\u003C/math-field>.\u003Cbr />\n2. The percentage change formula is given by:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Percentage Change} = \\frac{V_{2012/13} - V_{2010/11}}{V_{2010/11}} \\times 100\\%\u003C/math-field>\u003C/math-field>\u003Cbr />\n3. Substitute the provided or known values into the formula if available.\u003Cbr />\n\u003Cbr />\n* Note: As specific numerical values for 2010/11 and 2012/13 are not provided, numbers need to be inputted to complete this calculation.",1486,297,"from-2010-11-to-2012-13-what-is-the-percentage-change-in-the-total-value-of-open-tuition-loans",{"id":85,"category":49,"text_question":86,"photo_question":51,"text_answer":87,"step_text_answer":8,"step_photo_answer":8,"views":88,"likes":89,"slug":90},537922,"Find three consecutive integers whose sum is 84","1. Represent the consecutive integers as $x$, $x+1$, and $x+2$.\u003Cbr />\n\u003Cbr />\n2. Write the equation for their sum: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + (x+1) + (x+2) = 84\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Simplify and solve for $x$:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 3 = 84\u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x = 81\u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 27\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. The integers are $x = 27$, $x + 1 = 28$, $x + 2 = 29$.\u003Cbr />\n\u003Cbr />\n5. Therefore, the three consecutive integers are 27, 28, and 29.",1301,260,"find-three-consecutive-integers-whose-sum-is-84",{"id":92,"category":49,"text_question":93,"photo_question":51,"text_answer":94,"step_text_answer":8,"step_photo_answer":8,"views":95,"likes":96,"slug":97},537859,"A music store buys instruments and then sells them for 30% more than they originally paid. if the store buys a guitar for $45 then what will the store sell it for?","1. Calculate 30% of the original price:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 0.30 \\times 45 = 13.5 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Add this amount to the original price:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 45 + 13.5 = 58.5 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Hence, the store will sell the guitar for \u003Cstrong>$58.50\u003C/strong>.",1419,284,"a-music-store-buys-instruments-and-then-sells-them-for-30-more-than-they-originally-paid-if-the-store-buys-a-guitar-for-45-then-what-will-the-store-sell-it-for",{"id":99,"category":49,"text_question":100,"photo_question":51,"text_answer":101,"step_text_answer":8,"step_photo_answer":8,"views":102,"likes":103,"slug":104},537749,"Consider X, a variable whose distribution is normal with a mean of 5 and a variance of 2. We obtain the variable Z by standardizing X. If the value of z is -1 for an individual, what is the value of x for that same individual? Show your approach. (1 point).","1. Utiliser la formule de standardisation :\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> Z = \\frac{X - \\mu}{\\sigma} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Remplacer les valeurs données dans la formule :\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> -1 = \\frac{X - 5}{\\sqrt{2}} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Résoudre l'équation pour \\(X\\) :\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> -1 \\cdot \\sqrt{2} = X - 5 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> X = 5 - \\sqrt{2} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. La valeur de \\(x\\) pour laquelle \\(z = -1\\) est :\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 5 - \\sqrt{2} \u003C/math-field>\u003C/math-field>",448,90,"consider-x-a-variable-whose-distribution-is-normal-with-a-mean-of-5-and-a-variance-of-2-we-obtain-the-variable-z-by-standardizing-x-if-the-value-of-z-is-1-for-an-individual-what-is-the-value-of-x",{"id":106,"category":49,"text_question":107,"photo_question":51,"text_answer":108,"step_text_answer":8,"step_photo_answer":8,"views":109,"likes":110,"slug":111},537710,"By solving the combined operation 3 - 2 ∙ (2 ∙ 3 - 2 ∙ 4), we obtain:","1. Resolver la operación dentro del paréntesis:\u003Cbr />\n \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2 \\cdot 3 - 2 \\cdot 4\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n Esto se convierte en:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6 - 8 = -2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Sustituir el resultado en la expresión completa:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3 - 2 \\cdot (-2)\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Resolver la multiplicación:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2 \\cdot (-2) = -4\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Finalmente, resolver la resta:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3 - (-4) = 3 + 4 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nPor lo tanto, la respuesta es:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>7\u003C/math-field>\u003C/math-field>",343,69,"by-solving-the-combined-operation-3-2-2-3-2-4-we-obtain",{"id":113,"category":49,"text_question":114,"photo_question":51,"text_answer":115,"step_text_answer":8,"step_photo_answer":8,"views":116,"likes":117,"slug":118},537630,"3.\tDue to the force of gravity, a 15.0 kg wooden crate slides down a steel ramp with an incline of 25.0°. Compute the acceleration of the crate down the incline. \nThe coefficient of kinetic friction is 0.300.","1. Calculate the gravitational force component down the ramp:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> F_{\\text{gravity}} = 15.0 \\cdot 9.81 \\cdot \\sin(25.0^\\circ) = 62.08 \\, \\text{N} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Calculate the normal force:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> F_{\\text{normal}} = 15.0 \\cdot 9.81 \\cdot \\cos(25.0^\\circ) = 133.39 \\, \\text{N} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Find the frictional force:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> F_{\\text{friction}} = 0.300 \\cdot 133.39 = 40.02 \\, \\text{N} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Determine the net force down the ramp:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> F_{\\text{net}} = 62.08 - 40.02 = 22.06 \\, \\text{N} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Calculate the acceleration:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> a = \\frac{22.06}{15.0} = 1.47 \\, \\text{m/s}^2 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nThus, the acceleration of the crate down the incline is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 1.47 \\, \\text{m/s}^2 \u003C/math-field>\u003C/math-field>. (Please note that the original solution provided had an incorrect calculation. The correct acceleration should be \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 1.47 \\, \\text{m/s}^2 \u003C/math-field>\u003C/math-field>.)",1327,265,"3-due-to-the-force-of-gravity-a-15-0-kg-wooden-crate-slides-down-a-steel-ramp-with-an-incline-of-25-0-compute-the-acceleration-of-the-crate-down-the-incline-the-coefficient-of-kinetic-friction-i",{"first":6,"last":120,"prev":8,"next":10},11,{"current_page":6,"from":6,"last_page":120,"links":122,"path":153,"per_page":147,"to":147,"total":36},[123,126,129,131,133,135,137,140,143,146,149,151],{"url":6,"label":124,"active":125},"1",true,{"url":10,"label":127,"active":128},"2",false,{"url":13,"label":130,"active":128},"3",{"url":16,"label":132,"active":128},"4",{"url":19,"label":134,"active":128},"5",{"url":22,"label":136,"active":128},"6",{"url":138,"label":139,"active":128},7,"7",{"url":141,"label":142,"active":128},8,"8",{"url":144,"label":145,"active":128},9,"9",{"url":147,"label":148,"active":128},10,"10",{"url":120,"label":150,"active":128},"11",{"url":10,"label":152,"active":128},"Next »","https://api.math-master.org/api/question/expert",{"$sicons":155},{"bxl:facebook-circle":156,"bxl:instagram":160,"la:apple":162,"ph:google-logo":165,"mdi:web":168,"ph:google-logo-bold":170},{"left":157,"top":157,"width":158,"height":158,"rotate":157,"vFlip":128,"hFlip":128,"body":159},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":157,"top":157,"width":158,"height":158,"rotate":157,"vFlip":128,"hFlip":128,"body":161},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":157,"top":157,"width":163,"height":163,"rotate":157,"vFlip":128,"hFlip":128,"body":164},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":157,"top":157,"width":166,"height":166,"rotate":157,"vFlip":128,"hFlip":128,"body":167},256,"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"left":157,"top":157,"width":158,"height":158,"rotate":157,"vFlip":128,"hFlip":128,"body":169},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":157,"top":157,"width":166,"height":166,"rotate":157,"vFlip":128,"hFlip":128,"body":171},"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"t96FybqVTi":8,"03vYkMbnrn":8,"oVhJaef6Ht":8,"fJ7gll588I":8},"/expert/maude-13?page=9"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}