by 10 to convert to hundredths: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5 \\times 10 = 50 \\text{ hundredths}\u003C/math-field>\u003C/math-field> 3. Therefore, five tenths is equivalent to fifty hundredths: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5 \\text{ tenths} = 50 \\text{ hundredths}\u003C/math-field>\u003C/math-field> Answer: 50 hundredths",1408,282,"model-math-claire-drew-a-model-of-five-tenths-explain-how-claire-could-change-her-model-to-show-how-many-hundredths-are-in-five-tenths",{"id":56,"category":48,"text_question":57,"photo_question":50,"text_answer":58,"step_text_answer":8,"step_photo_answer":8,"views":59,"likes":60,"slug":61},538005,"Prime factor of 1245","First, we identify the smallest prime factor of 1245:\u003Cbr />\n\u003Cbr />\n1. Check if 1245 is divisible by 2: Since 1245 is odd, it is not divisible by 2.\u003Cbr />\n2. Check divisibility by 3: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1 + 2 + 4 + 5 = 12\u003C/math-field>\u003C/math-field> \u003Cbr />\n which is divisible by 3, so 1245 is divisible by 3. \u003Cbr />\n Dividing gives:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1245 \\div 3 = 415\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Check if 415 is divisible by 5: Since 415 ends in a 5, it is divisible by 5.\u003Cbr />\n Dividing gives:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>415 \\div 5 = 83\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Determine if 83 is a prime number: 83 is not divisible by 2, 3, 5, or 7 primenumbersuptothesquarerootof83, so 83 is a prime number.\u003Cbr />\n\u003Cbr />\nThus, the prime factors of 1245 are:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3, 5, 83\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n**Answer: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3, 5, 83\u003C/math-field>\u003C/math-field>**",929,186,"prime-factor-of-1245",{"id":63,"category":48,"text_question":64,"photo_question":50,"text_answer":65,"step_text_answer":8,"step_photo_answer":8,"views":66,"likes":67,"slug":68},537993,"Khaled has a cube in his hand and takes it to a painter who has 6 different colors. He asks the painter to color the cube so that each face has a different color. In how many ways can this be done?","1. Calculate the total number of permutations of the 6 colors: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6! = 720 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Account for the rotational symmetries of the cube 24:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{720}{24} = 30 \u003C/math-field>\u003C/math-field> \u003Cbr />\n\u003Cbr />\nThe final answer: 30 ways to paint the cube with each face a different color considering the cube's rotational symmetries.",962,192,"khaled-has-a-cube-in-his-hand-and-takes-it-to-a-painter-who-has-6-different-colors-he-asks-the-painter-to-color-the-cube-so-that-each-face-has-a-different-color-in-how-many-ways-can-this-be-done",{"id":70,"category":48,"text_question":71,"photo_question":50,"text_answer":72,"step_text_answer":8,"step_photo_answer":8,"views":73,"likes":74,"slug":75},537966,"−9p−10+3p+7p−9+3p\nsimplify do not factorise","1. Apply the distributive property to expand (−9p)(−10+3p):\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>−9p−10 + −9p3p = 90p - 27p^2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Apply the distributive property to expand 7p(−9+3p):\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>7p−9 + 7p3p = -63p + 21p^2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>−27p2+21p2 + 90p−63p = -6p^2 + 27p\u003C/math-field>\u003C/math-field> \u003Cbr />\n\u003Cbr />\n4. Therefore, the answer is:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-6p^2 + 27p\u003C/math-field>\u003C/math-field>",905,181,"9p-10-3p-7p-9-3p-simplify-do-not-factorise",{"id":77,"category":48,"text_question":78,"photo_question":50,"text_answer":79,"step_text_answer":8,"step_photo_answer":8,"views":80,"likes":81,"slug":82},537947,"33/10 - 27/20","Least common multiple of \u003Cmath-field read-only default-mode=\"inline-math\" style=\"padding-left:5px; padding-right:5px; display:inline-block; border-radius:4px; border: 1px solid rgba0,0,0,.3\">10\u003C/math-field> and \u003Cmath-field read-only default-mode=\"inline-math\" style=\"padding-left:5px; padding-right:5px; display:inline-block; border-radius:4px; border: 1px solid rgba0,0,0,.3\">20\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" style=\"padding-left:5px; padding-right:5px; display:inline-block; border-radius:4px; border: 1px solid rgba0,0,0,.3\">20\u003C/math-field>. Convert \u003Cmath-field read-only default-mode=\"inline-math\" style=\"padding-left:5px; padding-right:5px; display:inline-block; border-radius:4px; border: 1px solid rgba0,0,0,.3\">frac3310\u003C/math-field> and \u003Cmath-field read-only default-mode=\"inline-math\" style=\"padding-left:5px; padding-right:5px; display:inline-block; border-radius:4px; border: 1px solid rgba0,0,0,.3\">frac2720\u003C/math-field> to fractions with denominator \u003Cmath-field read-only default-mode=\"inline-math\" style=\"padding-left:5px; padding-right:5px; display:inline-block; border-radius:4px; border: 1px solid rgba0,0,0,.3\">20\u003C/math-field>.\n \n \u003Cdiv>\n \n \u003Cmath-field style=\"font-size: 16px;padding: 8px;border-radius: 8px;border: 1px solid rgba0,0,0,.3;box-shadow: 0 0 0 rgba0,0,0,.2\n\" read-only>\u003Cmath-field read-only>\\frac{66}{20}-\\frac{27}{20}\u003C/math-field> \u003C/math-field>\n \u003Cbr>\n \u003C/div>\n \n Since \u003Cmath-field read-only default-mode=\"inline-math\" style=\"padding-left:5px; padding-right:5px; display:inline-block; border-radius:4px; border: 1px solid rgba0,0,0,.3\">frac6620\u003C/math-field> and \u003Cmath-field read-only default-mode=\"inline-math\" style=\"padding-left:5px; padding-right:5px; display:inline-block; border-radius:4px; border: 1px solid rgba0,0,0,.3\">frac2720\u003C/math-field> have the same denominator, subtract them by subtracting their numerators.\n \n \u003Cdiv>\n \n \u003Cmath-field style=\"font-size: 16px;padding: 8px;border-radius: 8px;border: 1px solid rgba0,0,0,.3;box-shadow: 0 0 0 rgba0,0,0,.2\n\" read-only>\u003Cmath-field read-only>\\frac{66-27}{20}\u003C/math-field> \u003C/math-field>\n \u003Cbr>\n \u003C/div>\n \n Subtract \u003Cmath-field read-only default-mode=\"inline-math\" style=\"padding-left:5px; padding-right:5px; display:inline-block; border-radius:4px; border: 1px solid rgba0,0,0,.3\">27\u003C/math-field> from \u003Cmath-field read-only default-mode=\"inline-math\" style=\"padding-left:5px; padding-right:5px; display:inline-block; border-radius:4px; border: 1px solid rgba0,0,0,.3\">66\u003C/math-field> to get \u003Cmath-field read-only default-mode=\"inline-math\" style=\"padding-left:5px; padding-right:5px; display:inline-block; border-radius:4px; border: 1px solid rgba0,0,0,.3\">39\u003C/math-field>.\n \n \u003Cdiv>\n \n \u003Cmath-field style=\"font-size: 16px;padding: 8px;border-radius: 8px;border: 1px solid rgba0,0,0,.3;box-shadow: 0 0 0 rgba0,0,0,.2\n\" read-only>\u003Cmath-field read-only>\\frac{39}{20}\u003C/math-field> \u003C/math-field>\n \u003Cbr>\n \u003C/div>",1018,204,"33-10-27-20",{"id":84,"category":48,"text_question":85,"photo_question":50,"text_answer":86,"step_text_answer":8,"step_photo_answer":8,"views":87,"likes":88,"slug":89},537927,"in a geometric sequence a1=125 and a3=5 find the common ratio","1. The formula for the \\(n\\)-th term of a geometric sequence is given by:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> a_n = a_1 \\cdot r^{n-1} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Given \\( a_1 = 125 \\) and \\( a_3 = 5 \\). We can substitute into the formula for the third term:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> a_3 = a_1 \\cdot r^{3-1} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Substitute the known values:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 5 = 125 \\cdot r^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Solve for \\( r^2 \\):\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> r^2 = \\frac{5}{125} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify the fraction:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> r^2 = \\frac{1}{25} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Take the square root of both sides to solve for \\( r \\):\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r=\\pm\\frac{1}{5}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Therefore, the common ratio is:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r=\\pm\\frac{1}{5}\u003C/math-field>\u003C/math-field>",1383,277,"in-a-geometric-sequence-a1-125-and-a3-5-find-the-common-ratio",{"id":91,"category":48,"text_question":92,"photo_question":50,"text_answer":93,"step_text_answer":8,"step_photo_answer":8,"views":94,"likes":95,"slug":96},537921,"A pilot flew 390 nautical miles in 45 minutes. Find his average speed in knots (nautical miles per hour)","1. Convert time from minutes to hours: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{{Time in hours}} = \\frac{45}{60} = 0.75 \u003C/math-field>\u003C/math-field>.\u003Cbr />\n2. Calculate average speed: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\text{{Average speed}} = \\frac{390}{0.75} \u003C/math-field>\u003C/math-field>.\u003Cbr />\n3. The average speed of the pilot is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 520 \u003C/math-field>\u003C/math-field> knots.",1037,207,"a-pilot-flew-390-nautical-miles-in-45-minutes-find-his-average-speed-in-knots-nautical-miles-per-hour",{"id":98,"category":48,"text_question":99,"photo_question":50,"text_answer":100,"step_text_answer":8,"step_photo_answer":8,"views":101,"likes":102,"slug":103},537919,"Write and solve an equation:\nFind a number such that the difference of 97 and eighteen times the number is five times one more than the number","1. Let the number be \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x \u003C/math-field>\u003C/math-field>.\u003Cbr />\n2. According to the problem, the difference of 97 and eighteen times the number (\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 18x \u003C/math-field>\u003C/math-field>) is equal to five times one more than the number (\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 5(x+1) \u003C/math-field>\u003C/math-field>).\u003Cbr />\n\u003Cbr />\n The equation can be written as: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 97 - 18x = 5(x + 1) \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Expand the term on the right-hand side: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 5(x + 1) = 5x + 5 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Substitute back into the equation:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 97 - 18x = 5x + 5 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Bring all terms involving \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x \u003C/math-field>\u003C/math-field> to one side and constant terms to the other:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 97 - 5 = 18x + 5x \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Simplify both sides:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 92 = 23x \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x \u003C/math-field>\u003C/math-field>:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{92}{23} = 4 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore, the number is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 4 \u003C/math-field>\u003C/math-field>.",1373,275,"write-and-solve-an-equation-find-a-number-such-that-the-difference-of-97-and-eighteen-times-the-number-is-five-times-one-more-than-the-number",{"id":105,"category":48,"text_question":106,"photo_question":50,"text_answer":107,"step_text_answer":8,"step_photo_answer":8,"views":108,"likes":109,"slug":110},537907,"Ivan learned 15 out of 20 questions. What is the probability that the student got a question he did not learn?","- Ivan je naučio 15 pitanja od 20, tako da je broj pitanja koja nije naučio \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 20 - 15 = 5 \u003C/math-field>\u003C/math-field>.\u003Cbr />\n- Ukupan broj pitanja je 20.\u003Cbr />\n- Vjerojatnost da je Ivan dobio pitanje koje nije naučio iznosi \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{5}{20} \u003C/math-field>\u003C/math-field>.\u003Cbr />\n- Jednostavnim deljenjem dobijamo vjerojatnost: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{5}{20} = \\frac{1}{4} \u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\nOdgovor je: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{1}{4} \u003C/math-field>\u003C/math-field>.",518,104,"ivan-learned-15-out-of-20-questions-what-is-the-probability-that-the-student-got-a-question-he-did-not-learn",{"id":112,"category":48,"text_question":113,"photo_question":50,"text_answer":114,"step_text_answer":8,"step_photo_answer":8,"views":115,"likes":116,"slug":117},537870,"Express the repeating decimal as a quotient of two integers. 4.09 (9 is repeating)","1. Let \\( x = 4.099999\\ldots \\). \u003Cbr>\u003Cbr>2. Multiply by 10 to shift the decimal point for the non-repeating part: \\( 10x = 40.99999\\ldots \\).\u003Cbr>\u003Cbr>3. Multiply by 100 to shift the decimal point so that the repeating part aligns: \\( 100x = 409.99999\\ldots \\).\u003Cbr>\u003Cbr>4. Subtract the equation of step 2 from step 3: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 100x - 10x = 409.9999\\ldots - 40.9999\\ldots \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 90x = 369 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Solve for \\( x \\) to get the fraction:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{369}{90} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Simplify the fraction:\u003Cbr>\u003Cbr>Divide both numerator and denominator by 9:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x=\\frac{41}{10}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>",1066,213,"express-the-repeating-decimal-as-a-quotient-of-two-integers-4-09-9-is-repeating",{"first":6,"last":119,"prev":8,"next":10},11,{"current_page":6,"from":6,"last_page":119,"links":121,"path":152,"per_page":146,"to":146,"total":35},[122,125,128,130,132,134,136,139,142,145,148,150],{"url":6,"label":123,"active":124},"1",true,{"url":10,"label":126,"active":127},"2",false,{"url":13,"label":129,"active":127},"3",{"url":16,"label":131,"active":127},"4",{"url":19,"label":133,"active":127},"5",{"url":22,"label":135,"active":127},"6",{"url":137,"label":138,"active":127},7,"7",{"url":140,"label":141,"active":127},8,"8",{"url":143,"label":144,"active":127},9,"9",{"url":146,"label":147,"active":127},10,"10",{"url":119,"label":149,"active":127},"11",{"url":10,"label":151,"active":127},"Next »","https://api.math-master.org/api/question/expert",{"$sicons":154},{"bxl:facebook-circle":155,"bxl:instagram":159,"la:apple":161,"ph:google-logo":164,"mdi:web":167,"ph:google-logo-bold":169},{"left":156,"top":156,"width":157,"height":157,"rotate":156,"vFlip":127,"hFlip":127,"body":158},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":156,"top":156,"width":157,"height":157,"rotate":156,"vFlip":127,"hFlip":127,"body":160},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":156,"top":156,"width":162,"height":162,"rotate":156,"vFlip":127,"hFlip":127,"body":163},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":156,"top":156,"width":165,"height":165,"rotate":156,"vFlip":127,"hFlip":127,"body":166},256,"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"left":156,"top":156,"width":157,"height":157,"rotate":156,"vFlip":127,"hFlip":127,"body":168},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":156,"top":156,"width":165,"height":165,"rotate":156,"vFlip":127,"hFlip":127,"body":170},"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"t96FybqVTi":8,"5u3dCt3ZZS":8,"oVhJaef6Ht":8,"fJ7gll588I":8},"/expert/miles-15?page=10"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}