implemented new rules lin residents. A key component of these rules is that residents should work no more than 80 hours per we of weekly hours worked in 2022 by a sample of residents at the Tidelands Medical Center. UsetDistri\n848684867982878184787486\n\nB.Whatisthepointestimateofthepopulationstandarddeviation?\nNote:Roundyouranswerto2decimalplaces.\nc.Whatisthemarginoferrorfora90):\u003Cbr>\u003Cbr>1. List the data: \\(84, 86, 84, 86, 79, 82, 87, 81, 84, 78, 74, 86\\).\u003Cbr>\u003Cbr>2. Calculate the sample mean (\\(\\bar{x}\\)): \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\bar{x} = \\frac{84 + 86 + 84 + 86 + 79 + 82 + 87 + 81 + 84 + 78 + 74 + 86}{12} = \\frac{991}{12} = 82.58\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Apply the standard deviation formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{\\frac{\\sum (x_i - \\bar{x})^2}{n - 1}}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{\\frac{(84-82.58)^2 + (86-82.58)^2 + \\ldots + (86-82.58)^2}{11}}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{\\frac{1.98 + 11.78 + 1.98 + 11.78 + 13.04 + 0.3364 + 20.57 + 2.48 + 1.98 + 21.02 + 73.73 + 11.78}{11}}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{\\frac{40.54 + 36.84 + 2.48 + 34.82}{11}}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{\\frac{151.46}{11}}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s=\\sqrt{15.5379}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s\\approx3.94\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>C. Margin of Error:\u003Cbr>\u003Cbr>1. Determine the critical value for 90% confidence with \\( n = 12 \\) which results in degrees of freedom \\( df = 11 \\). Use the t-distribution table.\u003Cbr>\u003Cbr>2. Critical value (\\(t^*\\)) for 90% confidence interval with \\(df = 11\\) is approximately 1.796.\u003Cbr>\u003Cbr>3. Calculate the margin of error:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>E=t^*\\times\\frac{s}{\\sqrt{n}}=1.796\\times\\frac{3.94}{\\sqrt{12}}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>E=1.796\\times1.137\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>E\\approx2.04\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>D. Develop a 90% Confidence Interval:\u003Cbr>\u003Cbr>1. Use the point estimate, margin of error, and sample mean:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\bar{x}\\pm E=82.58\\pm2.04\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Calculate the confidence interval:\u003Cbr>\u003Cbr>Lower limit: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>82.58-2.04=80.54\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Upper limit: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>82.58+2.04=84.62\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Round each bound to 2 decimal places: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(80.54,84.62)\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Answer: 90% Confidence Interval = \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(80.54,84.62)\u003C/math-field>\u003C/math-field>",null,422,84,"in-2003-the-accreditation-council-for-graduate-medical-education-acgme-implemented-new-rules-lin-residents-a-key-component-of-these-rules-is-that-residents-should-work-no-more-than-80-hours-per-we",{"id":16,"category":7,"text_question":17,"photo_question":9,"text_answer":18,"step_text_answer":11,"step_photo_answer":11,"views":19,"likes":20,"slug":21},538093,"FIND THE AREA UNDER THE Standard Normal Distribution: To the right of z = - 2.01","To find the area to the right of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field> on a standard normal distribution:\u003Cbr />\n\u003Cbr />\n1. We need to find the cumulative distribution function (CDF) value for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field>. \u003Cbr />\n\u003Cbr />\n2. Using the standard normal distribution table or a calculator, we find that the CDF value for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field> is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>0.0222\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n3. Since this value represents the area to the left of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field>, the area to the right is:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1 - 0.0222 = 0.9778\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore, the area under the standard normal distribution curve to the right of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>z = -2.01\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>0.9778\u003C/math-field>\u003C/math-field>.",878,176,"find-the-area-under-the-standard-normal-distribution-to-the-right-of-z-2-01",{"id":23,"category":7,"text_question":24,"photo_question":9,"text_answer":25,"step_text_answer":11,"step_photo_answer":11,"views":26,"likes":27,"slug":28},538092,"2²","The expression $2^2$ represents 2 raised to the power of 2, which is $2 \\times 2 = 4$. Therefore, the answer is 4.",898,180,"2",{"id":30,"category":7,"text_question":31,"photo_question":9,"text_answer":32,"step_text_answer":11,"step_photo_answer":11,"views":33,"likes":34,"slug":35},538090,"The ratio of Adam’s weight to John’s weight is 6:5. If Adam weighs 48 KG, find John’s weight.","Let Adam's weight be represented as \\( A \\) and John's weight as \\( J \\). \u003Cbr />\n\u003Cbr />\nGiven the ratio is 6:5, we have:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{A}{J} = \\frac{6}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nWe know Adam's weight \\( A = 48 \\, \\text{KG} \\).\u003Cbr />\n\u003Cbr />\nSo substitute \\( A \\) in the ratio:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{48}{J} = \\frac{6}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nBy cross-multiplying:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6J = 5 \\times 48 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6J = 240 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nNow, solve for \\( J \\):\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> J = \\frac{240}{6} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> J = 40 \\, \\text{KG} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore, John's weight is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40 \\text{ KG}\u003C/math-field>\u003C/math-field>.",591,118,"the-ratio-of-adam-s-weight-to-john-s-weight-is-6-5-if-adam-weighs-48-kg-find-john-s-weight",{"id":37,"category":7,"text_question":38,"photo_question":9,"text_answer":39,"step_text_answer":11,"step_photo_answer":11,"views":40,"likes":41,"slug":42},538089,"David cuts a rope 60 m long into two pieces in the ratio 2:3. What is the length of the shorter piece of rope?","1. Let the lengths of the two pieces of rope be represented as $2x$ and $3x$, since they are in the ratio 2:3.\u003Cbr />\n \u003Cbr />\n2. According to the problem, the sum of the lengths of the two pieces is 60 m, so:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x + 3x = 60 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 5x = 60 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Solve for $x$:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{60}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. The length of the shorter piece of rope is $2x$, so:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 2 \\times 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 24 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Therefore, the length of the shorter piece of rope is:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 24 \\, \\text{m} \u003C/math-field>\u003C/math-field>",1166,233,"david-cuts-a-rope-60-m-long-into-two-pieces-in-the-ratio-2-3-what-is-the-length-of-the-shorter-piece-of-rope",{"id":44,"category":7,"text_question":45,"photo_question":9,"text_answer":46,"step_text_answer":11,"step_photo_answer":11,"views":47,"likes":48,"slug":49},538088,"Breanne made pineapple drinks by mixing pineapple syrup and water in the ratio 2:7. If she used 4 L of pineapple syrup, how much water did she use?","1. The ratio of pineapple syrup to water is 2:7. This means for every 2 parts of syrup, there are 7 parts of water.\u003Cbr />\n2. Breanne used 4 L of pineapple syrup. Set up the proportion:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{2}{7} = \\frac{4}{x} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n where \\( x \\) is the amount of water used.\u003Cbr />\n\u003Cbr />\n3. Cross-multiply to solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 7 \\cdot 4 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 28 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{28}{2} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Calculate:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 14 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Therefore, Breanne used 14 L of water. \u003Cbr />\n\u003Cbr />\nAnswer: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>14 \\text{ L}\u003C/math-field>\u003C/math-field>",783,157,"breanne-made-pineapple-drinks-by-mixing-pineapple-syrup-and-water-in-the-ratio-2-7-if-she-used-4-l-of-pineapple-syrup-how-much-water-did-she-use",{"id":51,"category":7,"text_question":52,"photo_question":9,"text_answer":53,"step_text_answer":11,"step_photo_answer":11,"views":54,"likes":55,"slug":56},538087,"y=-2(4)^x+1 +1 describe transformation","Solution:\u003Cbr />\n1. Given function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = -2(4)^{x+1} + 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Base function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Identify transformations step-by-step:\u003Cbr />\n - **Translation horizontally**: The function has \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(x+1)\u003C/math-field>\u003C/math-field> as the exponent instead of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>. This indicates a horizontal shift to the left by 1 unit.\u003Cbr />\n - **Vertical stretch and reflection**: The coefficient before \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Vertical stretch**: The factor \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field> indicates that the function is stretched vertically by a factor of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Reflection**: The negative sign indicates a reflection across the x-axis.\u003Cbr />\n - **Vertical translation**: The \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>+1\u003C/math-field>\u003C/math-field> outside the function indicates a vertical shift upwards by 1 unit.\u003Cbr />\n\u003Cbr />\n4. Describe the complete transformation:\u003Cbr />\n - The function \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field> undergoes the following transformations: a horizontal shift to the left by 1 unit, a vertical stretch by a factor of 2, reflection across the x-axis, and finally a vertical shift upwards by 1 unit.",1255,251,"y-2-4-x-1-1-describe-transformation",{"id":58,"category":7,"text_question":59,"photo_question":9,"text_answer":60,"step_text_answer":11,"step_photo_answer":11,"views":61,"likes":62,"slug":63},538086,"Add the polynomials g(x)=x3-2x2+3x-1+4x2-x+2","Solution: \u003Cbr />\n1. Write down the given polynomials:\u003Cbr />\n- First polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>g(x) = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Second polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Align and add the polynomials term by term:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>g(x) = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Add the corresponding like terms:\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^2\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2x^2 + 4x^2 = 2x^2\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x - x = 2x\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For constant terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-1 + 2 = 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. The resulting polynomial after addition is:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3 + 2x^2 + 2x + 1\u003C/math-field>\u003C/math-field>",739,148,"add-the-polynomials-g-x-x3-2x2-3x-1-4x2-x-2",{"id":65,"category":7,"text_question":66,"photo_question":9,"text_answer":67,"step_text_answer":11,"step_photo_answer":11,"views":68,"likes":69,"slug":70},538085,"R=3m. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. The formula for the volume of a sphere is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi R^3 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. Substitute the given radius \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> R = 3 \\, \\text{m} \u003C/math-field>\u003C/math-field> into the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi (3)^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3^3 = 27 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Thus, the volume becomes:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 27 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify the expression:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4 \\times 27}{3} \\pi = 36 \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Use the approximation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field> :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 36 \\times 3.1416 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Calculate the approximate volume:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx113.0973\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>8. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Therefore, the volume of the sphere is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> .",1203,241,"r-3m-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":72,"category":7,"text_question":73,"photo_question":9,"text_answer":74,"step_text_answer":11,"step_photo_answer":11,"views":75,"likes":76,"slug":77},538084,"Width of 12 in. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. Identify the radius of the sphere. Given the width is 12 inches, the diameter is 12 inches. Therefore, the radius is half of the diameter:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> r = \\frac{12}{2} = 6 \\, \\text{in} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Use the formula for the volume of a sphere:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi r^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute the radius into the formula:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi (6)^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 216 = \\frac{864}{3} \\pi = 288 \\pi \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Approximate using \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field>:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 288 \\times 3.1416 = 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. The volume of the sphere, rounded to the nearest tenth, is approximately:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>",278,56,"width-of-12-in-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":79,"category":7,"text_question":80,"photo_question":9,"text_answer":81,"step_text_answer":11,"step_photo_answer":11,"views":82,"likes":83,"slug":84},538083,"Calculate the volume (to the nearest tenth of a cubic centimeter) of a golf ball whose diameter is 4.267cm","1. The formula for the volume of a sphere is given by \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi r^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. The diameter of the golf ball is given as 4.267 cm, so the radius is half of that: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r = \\frac{4.267}{2} = 2.1335 \\, \\text{cm}\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>3. Substitute the radius into the volume formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi (2.1335)^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Calculate the cube of the radius: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(2.1335)^3 = 9.707432537375\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>5. Substitute this back into the formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V=\\frac{4}{3}\\pi\\times9.707432537375\\approx40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>6. The volume of the golf ball is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .",1440,288,"calculate-the-volume-to-the-nearest-tenth-of-a-cubic-centimeter-of-a-golf-ball-whose-diameter-is-4-267cm",{"id":86,"category":7,"text_question":87,"photo_question":9,"text_answer":88,"step_text_answer":11,"step_photo_answer":11,"views":89,"likes":13,"slug":90},538082,"Find the length of each base edge (to the nearest tenth of a meter) of the 24m tall glass square pyramids of the Muttart Conservatory in Alberta, Canada, if each contains 5280m^3 of space","1. Volume V of a square pyramid is given by the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{1}{3} B h\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>where B is the area of the base and h is the height of the pyramid.\u003Cbr>\u003Cbr>2. Given that the height h = 24 m and the volume V = 5280 m^3.\u003Cbr>\u003Cbr>3. The base is square, so if the side length of the base is s, then:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>B = s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substituting into the volume formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = \\frac{1}{3} s^2 \\times 24\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify and solve for s^2:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = 8 s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s^2 = \\frac{5280}{8} = 660\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Solve for s:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{660} \\approx 25.7\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. To find the length of each base edge to the nearest tenth of a meter, compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s \\approx 25.7 \\, \\text{m}\u003C/math-field>\u003C/math-field>",418,"find-the-length-of-each-base-edge-to-the-nearest-tenth-of-a-meter-of-the-24m-tall-glass-square-pyramids-of-the-muttart-conservatory-in-alberta-canada-if-each-contains-5280m-3-of-space",{"id":92,"category":7,"text_question":93,"photo_question":9,"text_answer":94,"step_text_answer":11,"step_photo_answer":11,"views":95,"likes":96,"slug":97},538081,"An observer is 150 meters away\n distance of a hot air balloon online\n straight line at ground level. From your position,\n measures an elevation angle of 40° up to\n the base of the balloon. At what height is\n find the hot air balloon?","Solution:\u003Cbr />\n1. Dado:\u003Cbr />\n- Distancia horizontal desde el observador hasta la base del globo: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = 150 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Ángulo de elevación: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\theta = 40^{\\circ}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Usamos la función tangente para encontrar la altura \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field> del globo aerostático. La tangente de un ángulo en un triángulo rectángulo es la razón entre la altura y la distancia horizontal:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(\\theta) = \\frac{h}{d}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Sustituimos los valores conocidos en la ecuación:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(40^{\\circ}) = \\frac{h}{150}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Resolvemos para \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h = 150 \\times \\tan(40^{\\circ})\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Calculamos el valor numérico:\u003Cbr />\n* Usando una calculadora, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(40^{\\circ}) \\approx 0.8391\u003C/math-field>\u003C/math-field>\u003Cbr />\n* Entonces: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h \\approx 150 \\times 0.8391 = 125.865 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nLa altura del globo aerostático es aproximadamente \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>125.865 \\ m\u003C/math-field>\u003C/math-field>.",667,133,"an-observer-is-150-meters-away-distance-of-a-hot-air-balloon-online-straight-line-at-ground-level-from-your-position-measures-an-elevation-angle-of-40-up-to-the-base-of-the-balloon-at-what-hei",{"id":99,"category":7,"text_question":100,"photo_question":9,"text_answer":101,"step_text_answer":11,"step_photo_answer":11,"views":102,"likes":103,"slug":104},538080,"A plane ticket has gone up 18%, now costing $4,720. How much did it cost before the increase?","\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Solution:}\u003C/math-field>\u003C/math-field>\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> be the original price of the plane ticket.\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> increased by 18% means the new price is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P + 0.18P = 1.18P\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Set up the equation based on the problem statement:\u003Cbr />\n- The new price \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>= 4,720\u003C/math-field>\u003C/math-field>.\u003Cbr />\n- Therefore, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1.18P = 4,720\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n3. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field>:\u003Cbr />\n- Divide both sides by 1.18 to isolate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field>.\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P = \\frac{4,720}{1.18}\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P \\approx 4,000\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Answer:}\u003C/math-field>\u003C/math-field>\u003Cbr />\n- The original price of the plane ticket was approximately USD 4,000.",726,145,"a-plane-ticket-has-gone-up-18-now-costing-4-720-how-much-did-it-cost-before-the-increase",{"id":106,"category":7,"text_question":107,"photo_question":9,"text_answer":108,"step_text_answer":11,"step_photo_answer":11,"views":109,"likes":110,"slug":111},538078,"H=8mm, r=2mm. Calculate the volume of the cone round to the nearest tenth if necessary","1. Use the formula for the volume of a cone: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi r^2 H \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Substitute the given values: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> H = 8 \\, \\text{mm}, \\, r = 2 \\, \\text{mm} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (2)^2 (8) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \\( (2)^2 \\):\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (2)^2 = 4 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substitute and compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (4)(8) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (32) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Calculate the product: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{32}{3} \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Calculate:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx33.51032\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 33.5 \\, \\text{mm}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>This is the answer: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 33.5 \\, \\text{mm}^3 \u003C/math-field>\u003C/math-field>",631,126,"h-8mm-r-2mm-calculate-the-volume-of-the-cone-round-to-the-nearest-tenth-if-necessary",{"id":113,"category":7,"text_question":114,"photo_question":9,"text_answer":115,"step_text_answer":11,"step_photo_answer":11,"views":116,"likes":117,"slug":118},538076,"Dividing 218 or 172 by the natural number n, you get a remainder of 11. Dividing n by 11, you get a remainder equal to:","** \u003Cbr>\u003Cbr>1. Since dividing 218 by n gives a remainder of 11, 218 - 11 = 207 is divisible by n : \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>207\\equiv0\\pmod{n}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Similarly, dividing 172 by n gives a remainder of 11, so 172 - 11 = 161 is divisible by n :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>161\\equiv0\\pmod{n}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. n must be a common divisor of 207 and 161. Find the greatest common divisor of 207 and 161:\u003Cbr>\u003Cbr>- First, find the difference: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 207 - 161 = 46 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Find the prime factorization of 46:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 46 = 2 \\times 23 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Prime factorization of 161:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 161 = 7 \\times 23 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Common factor is 23.\u003Cbr>\u003Cbr>4. Therefore, the possible value of n should be 23 (since other divisions have factors that don't divide both). Now, divide n = 23 by 11:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 23 \\div 11 = 2 \\, \\text{R} \\, 1 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Thus, the remainder of dividing n by 11 is 1\u003Cbr>\u003Cbr>",1233,247,"dividing-218-or-172-by-the-natural-number-n-you-get-a-remainder-of-11-dividing-n-by-11-you-get-a-remainder-equal-to",{"id":120,"category":7,"text_question":121,"photo_question":9,"text_answer":122,"step_text_answer":11,"step_photo_answer":11,"views":123,"likes":124,"slug":125},538074,"R=24 inches\nCalculate the surface area of the sphere","1. The formula to calculate the surface area of a sphere is given by: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 4 \\pi R^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Substitute the value of the radius \\( R = 24 \\) inches into the formula: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 4 \\pi (24)^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate the square of the radius:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (24)^2 = 576 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Multiply by 4:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 4 \\times 576 = 2304 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. The surface area is:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>A=2304\\pi=7238.23\u003C/math-field>\u003C/math-field> square inches \u003Cbr>\u003Cbr>Therefore, the surface area of the sphere is 7238.23 square inches.",923,185,"r-24-inches-calculate-the-surface-area-of-the-sphere",{"id":127,"category":7,"text_question":128,"photo_question":9,"text_answer":129,"step_text_answer":11,"step_photo_answer":11,"views":130,"likes":131,"slug":132},538073,"Andrés's age is three times Quan's.\n plus wins and both ages add up to 69 years. Nillar\n both ages.","Solution:\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field> be the age of Andrés.\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field> be the age of Quan.\u003Cbr />\n\u003Cbr />\n2. Set up the equations based on the problem:\u003Cbr />\n- Andrés is three times as old as Quan: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field>\u003Cbr />\n- The sum of their ages is 69: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a + q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field> into the second equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3q + q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify the equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q = \\frac{69}{4}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Compute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q = 17.25\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Find \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field> using the equation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3 \\times 17.25\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n8. Compute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 51.75\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore:\u003Cbr />\n- Quan is approximately 17.25 years old.\u003Cbr />\n- Andrés is approximately 51.75 years old.",553,111,"andres-s-age-is-three-times-quan-s-plus-wins-and-both-ages-add-up-to-69-years-nillar-both-ages",{"id":134,"category":7,"text_question":135,"photo_question":9,"text_answer":136,"step_text_answer":11,"step_photo_answer":11,"views":137,"likes":138,"slug":139},538072,"Andrew's age is three times John's plus nine years, and their ages add up to 69 years. Find both ages.","Solution:\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> be Juan's age.\u003Cbr />\n- Andrés' age is then \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Set up the equation for the total age:\u003Cbr />\n- Juan's age \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> plus Andrés' age \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9\u003C/math-field>\u003C/math-field> equals 69.\u003Cbr />\n\u003Cbr />\n3. Equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + (3x + 9) = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify and solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + 3x + 9 = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x + 9 = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x = 60\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 15\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Find Andrés' age:\u003Cbr />\n- Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 15\u003C/math-field>\u003C/math-field> into Andrés' age expression:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9 = 3(15) + 9 = 45 + 9 = 54\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Therefore, the ages are:\u003Cbr />\n- Juan: 15 years\u003Cbr />\n- Andrés: 54 years",531,106,"andrew-s-age-is-three-times-john-s-plus-nine-years-and-their-ages-add-up-to-69-years-find-both-ages",{"id":141,"category":7,"text_question":142,"photo_question":9,"text_answer":143,"step_text_answer":11,"step_photo_answer":11,"views":144,"likes":145,"slug":146},538071,"Solve the following linear equations:\n 1) 5x-3= 3X+7","Solution:\u003Cbr />\n1. Given Equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3 = 3x + 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Subtract \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x\u003C/math-field>\u003C/math-field> from both sides to simplify:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3x - 3 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x - 3 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Add 3 to both sides to isolate the term with the variable:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x = 10\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Divide both sides by 2 to solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 5\u003C/math-field>\u003C/math-field>",1382,276,"solve-the-following-linear-equations-1-5x-3-3x-7",{"first":148,"last":149,"prev":11,"next":150},1,188,2,{"current_page":148,"from":148,"last_page":149,"links":152,"path":189,"per_page":190,"to":190,"total":191},[153,156,158,161,164,167,170,173,176,179,182,185,187],{"url":148,"label":154,"active":155},"1",true,{"url":150,"label":28,"active":157},false,{"url":159,"label":160,"active":157},3,"3",{"url":162,"label":163,"active":157},4,"4",{"url":165,"label":166,"active":157},5,"5",{"url":168,"label":169,"active":157},6,"6",{"url":171,"label":172,"active":157},7,"7",{"url":174,"label":175,"active":157},8,"8",{"url":177,"label":178,"active":157},9,"9",{"url":180,"label":181,"active":157},10,"10",{"url":183,"label":184,"active":157},187,"187",{"url":149,"label":186,"active":157},"188",{"url":150,"label":188,"active":157},"Next »","https://api.math-master.org/api/question",20,3743,{"data":193},[194,196,198,200,202,204],{"id":148,"title":195,"slug":11},"Algebra",{"id":150,"title":197,"slug":11},"Geometry",{"id":159,"title":199,"slug":11},"Coordinate-geometry",{"id":162,"title":201,"slug":11},"Statistics",{"id":165,"title":203,"slug":11},"Calculus",{"id":168,"title":205,"slug":11},"General",{"data":207},[208,209,210,211,212,213],{"id":148,"title":195,"slug":11},{"id":150,"title":197,"slug":11},{"id":159,"title":199,"slug":11},{"id":162,"title":201,"slug":11},{"id":165,"title":203,"slug":11},{"id":168,"title":205,"slug":11},{"data":215},{"id":216,"category":7,"slug":217,"text_question":218,"photo_question":11,"text_answer":219,"step_text_answer":11,"step_photo_answer":11,"views":220,"likes":221,"expert":222},537677,"current-sizing-involves-developing-some-calculations-and-consulting-some-tables-so-that-sufficient-parameters-can-be-defined-for-using-the-correct-current-for-a-given-application-suppose-you-are-an","Current sizing involves developing some calculations and consulting some tables so that sufficient parameters can be defined for using the correct current for a given application.\n\n Suppose you are an engineer at a large company and need to determine the number of teeth on a pinion. Use the table below as a reference for the calculation. Do as requested.\n\n Current type\n\n Gear ratio\n\n 1\n\n 2\n\n 3\n\n 4\n\n 5\n\n 6\n\n Roller chain\n\n 31\n\n 27\n\n 25\n\n 23\n\n 21\n\n 17\n\n Table 1 - Selection of the number of pinion teeth\n Source: Adapted from Melconian (2019, p. 300).\n\n #PracegoVer: the table shows the definition of the number of teeth on the pinion. The first column has two lines, the first being “Chain type”, and the second, “Roller chain”. The second column contains three lines. The first line shows the “Transmission ratio”. The second line has six other columns: the first column contains the number “1”; the second, the number “2”; the third, the number “3”; the fourth, the number “5”; and the sixth, the number “6”. The second line of the “Transmission ratio” column contains six other columns, the first being “31”; the second “27”; the third “25”; the fourth “23”; the fifth “21”; and the sixth “17”.\n\n MELCONIAN, S. Machine Elements. 11th ed.\n\n According to the table, answer: a reducer is driven by a chain transmission, driven by an electric motor with a power of 22 kW and rotation n = 1180 rpm. The input shaft rotation is 600 rpm. The permitted center distance is 500 mm. Consider a chain pitch of 5/8” and the use of roller chains with vp (peripheral speed) limited to 12 m/s.\n\n Calculate:\n\n a) the number of pinion teeth (Z1);\n\n b) the number of teeth on the crown (Z2);\n\n c) peripheral speed (vp);\n\n d) the tangential force (FT) in Newton;\n\n e) checking the distance between centers (C);\n\n f) the number of links in the chain (y); and\n\n g) the length of the chain (l).","a) The gear ratio can be calculated using:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> i = \\frac{n_1}{n_2} = \\frac{1180}{600} \\approx 1.9667 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nLook up the gear ratio in the table. For a ratio of approximately 2, the number of pinion teeth $Z_1$ is:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> Z_1 = 27 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nb) The number of teeth on the crown can be calculated by:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> Z_2 = Z_1 \\times i \\approx 27 \\times 1.9667 \\approx 54 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nc) The peripheral speed $vp$ can be calculated using:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> v_p = \\frac{Z_1 \\cdot n_2 \\cdot \\pi \\cdot P}{60 \\times 1000} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> v_p = \\frac{27 \\times 600 \\times \\pi \\times \\frac{5}{8}}{60 \\times 1000} \\approx 11.02 \\, \\text{m/s} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nd) The tangential force $F_T$ can be calculated as:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> F_T = \\frac{P}{v_p} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> F_T = \\frac{22 \\times 1000}{11.02} \\approx 1987.43 \\, \\text{N} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\ne) The center distance $C$ can be calculated approximately by:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> C = \\frac{P}{2\\pi} (Z_1 + Z_2) \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> C \\approx 500 \\, \\text{mm} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nf) Chain links $y$ can be approximated by:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> y = \\frac{2C}{P} + \\frac{Z_2 + Z_1}{2} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nAssuming $y \\approx 50$\u003Cbr />\n\u003Cbr />\ng) The length of the chain $l$ can be calculated as:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> l = y \\times P \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> l \\approx 1538.6 \\, \\text{mm} \u003C/math-field>\u003C/math-field>",770,154,{"id":168,"name":223,"photo":224,"biography":225,"created_at":11,"updated_at":11,"rating":226,"total_answer":227},"Jett","https://api.math-master.org/img/experts/6/6.webp","Hello,\nI am pleased to introduce myself as a Mathmaster Expert 😊\nI am Engr. Paul Eejay Dy, a Registered Civil Engineer in the Philippines and Mathematics has always been my favorite subject.\nStudying Mathematics is a really difficult but fun experience for me and with the help of really great teachers and professors that helped me on this journey, I overcame all the obstacles that came my way until I achieved my dream profession.\nSo for all Mathmaster users, it is a great pleasure to be part of your journey into this rough but fulfilling journey of studying Mathematics. Study hard, and keep fighting for your dreams 😇🙏",4.7,94,{"data":229},{"questions":230},[231,235,239,243,247,251,255,259,263,267,271,275,279,283,287,291,295,299,303,307],{"id":232,"category":7,"text_question":233,"slug":234},532008,"1 + 1","1-1",{"id":236,"category":7,"text_question":237,"slug":238},532052,"-6n+5=-13","6n-5-13",{"id":240,"category":7,"text_question":241,"slug":242},532060,"5(4x+3)=75","5-4x-3-75",{"id":244,"category":7,"text_question":245,"slug":246},532305,"Find the equation of the normal to the curve y=x²+4x-3 at point(1,2)","find-the-equation-of-the-normal-to-the-curve-y-x-4x-3-at-point-1-2",{"id":248,"category":7,"text_question":249,"slug":250},534070,"how many arrangement can be made of 4 letters chosen from the 8 letters of the world ABBSOLUTE","how-many-arrangement-can-be-made-of-4-letters-chosen-from-the-8-letters-of-the-world-abbsolute",{"id":252,"category":7,"text_question":253,"slug":254},534082,"By direct proof, how can you prove that “The sum of any three consecutive even integers is\nalways a multiple of 6”.","by-direct-proof-how-can-you-prove-that-the-sum-of-any-three-consecutive-even-integers-is-always-a-multiple-of-6",{"id":256,"category":7,"text_question":257,"slug":258},534111,"5.- From the probabilities:\n 𝐏(𝐁) = 𝟑𝟎%\n 𝐏(𝐀 ∩ 𝐁) = 𝟐𝟎%\n 𝐏(𝐀\n ̅) = 𝟕𝟎%\n You are asked to calculate: 𝐏(𝐀 ∪ 𝐁)","5-from-the-probabilities-p-b-30-p-a-b-20-p-a-70-you-are-asked-to-calculate-p-a-b",{"id":260,"category":7,"text_question":261,"slug":262},534120,"If 0101, what is the binary representation of the 4x16 decoder output?","if-0101-what-is-the-binary-representation-of-the-4x16-decoder-output",{"id":264,"category":7,"text_question":265,"slug":266},534135,"What is 28 marks out of 56 as a percentage","what-is-28-marks-out-of-56-as-a-percentage",{"id":268,"category":7,"text_question":269,"slug":270},534178,"Two business partners have a bank balance of $17,942.00. After the first year their interest brings their balance to $18,928.91. What rate of interest is earned?","two-business-partners-have-a-bank-balance-of-17-942-00-after-the-first-year-their-interest-brings-their-balance-to-18-928-91-what-rate-of-interest-is-earned",{"id":272,"category":7,"text_question":273,"slug":274},534200,"suppose random variable x follows poisson distribution with expected value 3. what is variance of x?","suppose-random-variable-x-follows-poisson-distribution-with-expected-value-3-what-is-variance-of-x",{"id":276,"category":7,"text_question":277,"slug":278},534215,"Calculate the value of a so that the vectors (2,2,−1),(3,4,2) and(a,2,3) are coplanar.","calculate-the-value-of-a-so-that-the-vectors-2-2-1-3-4-2-and-a-2-3-are-coplanar",{"id":280,"category":7,"text_question":281,"slug":282},534286,"From 1975 through 2020 the mean annual gain of the Dow Jones Industrial Average was 652. A random sample of 34 years is selected from this population. What is the probability that the mean gain for the sample was between 400 and 800? Assume the standard deviation is 1539","from-1975-through-2020-the-mean-annual-gain-of-the-dow-jones-industrial-average-was-652-a-random-sample-of-34-years-is-selected-from-this-population-what-is-the-probability-that-the-mean-gain-for-th",{"id":284,"category":7,"text_question":285,"slug":286},534398,"effectiveness of fiscal and monetary policy under closed and open economies","effectiveness-of-fiscal-and-monetary-policy-under-closed-and-open-economies",{"id":288,"category":7,"text_question":289,"slug":290},534447,"A diamond ring was reduced from $999.99 to $689.99. Find the percent reduction in the price. Round the answer to the nearest tenth of a percent, if necessary.","a-diamond-ring-was-reduced-from-999-99-to-689-99-find-the-percent-reduction-in-the-price-round-the-answer-to-the-nearest-tenth-of-a-percent-if-necessary",{"id":292,"category":7,"text_question":293,"slug":294},534463,"Calculate the area of the parallelogram with adjacent vertices (1,4, −2), (−3,1,6) 𝑦 (1, −2,3)","calculate-the-area-of-the-parallelogram-with-adjacent-vertices-1-4-2-3-1-6-y-1-2-3",{"id":296,"category":7,"text_question":297,"slug":298},534477,"What is the total amount due and the amount of interest on a 3-year loan of $1,000 at a simple interest rate of 12% per year?","what-is-the-total-amount-due-and-the-amount-of-interest-on-a-3-year-loan-of-1-000-at-a-simple-interest-rate-of-12-per-year",{"id":300,"category":7,"text_question":301,"slug":302},534527,"22. Let [AB] be a chord in a circle C, and k a circle which is internally tangent to the circle C at a point P and to the\nchord [AB] at a point Q. Show that the line P Q passes through the midpoint of the arc AB opposite to the arc APB.","22-let-ab-be-a-chord-in-a-circle-c-and-k-a-circle-which-is-internally-tangent-to-the-circle-c-at-a-point-p-and-to-the-chord-ab-at-a-point-q-show-that-the-line-p-q-passes-through-the-midpoint-of",{"id":304,"category":7,"text_question":305,"slug":306},534621,"5a-3.(a-7)=-3","5a-3-a-7-3",{"id":308,"category":7,"text_question":309,"slug":310},534667,"f(x)= 9-x^2 find (f(x+h)-f(x) )/h","f-x-9-x-2-find-f-x-h-f-x-h",{"data":312},[313,317,321],{"id":314,"question":315,"answer":316},127341,"What is the value of the square root of 25? (",") The square root of 25 is 5 because 5 multiplied by itself is 25.",{"id":318,"question":319,"answer":320},118287,"What is the measure of angle BB'C, if angle ABC measures 120 degrees and angle ACB measures 50 degrees?","Angle BB'C measures 110 degrees. An angle bisector splits an angle into two congruent angles, so angle BB'C is congruent to angle ABC, which is 120 degrees. Therefore, the measure of angle BB'C is also 120 degrees. Since angle ACB measures 50 degrees, angle BB'C can be found using the equation 120 + 50 = 170. However, since an angle bisector splits an angle into two congruent angles, angle BB'C measures half of angle ABC, which is 60 degrees. Hence, the measure of angle BB'C is 110 degrees.",{"id":322,"question":323,"answer":324},161577,"What is the length of the hypotenuse of a right triangle with legs measuring 5cm and 12cm?","The length of the hypotenuse can be found using the Pythagorean theorem: c^2 = a^2 + b^2. Substituting the given values, c^2 = 5^2 + 12^2 = 25 + 144 = 169. Taking the square root of both sides, we get c = √169 = 13cm. Therefore, the length of the hypotenuse is 13cm.",{"data":326},{"questions":327},[328,332,336,340,344,348,352,356,360,364,368,372,376,380,384,388,392,393,397,401],{"id":329,"category":7,"text_question":330,"slug":331},532004,"Find 2 numbers that the sum of 1/3 of the first plus 1/5 of the second will be equal to 13 and that if you multiply the first by 5 and the second by 7 you get 247 as the sum of the two products\nwith replacement solution","find-2-numbers-that-the-sum-of-1-3-of-the-first-plus-1-5-of-the-second-will-be-equal-to-13-and-that-if-you-multiply-the-first-by-5-and-the-second-by-7-you-get-247-as-the-sum-of-the-two-products-with-r",{"id":333,"category":7,"text_question":334,"slug":335},532019,"If we have the sequence: 3, 6, 12, 24\n\nPlease determine the 14th term.","if-we-have-the-sequence-3-6-12-24-please-determine-the-14th-term",{"id":337,"category":7,"text_question":338,"slug":339},532091,"the value of sin 178°58'","the-value-of-sin-178-58-39",{"id":341,"category":7,"text_question":342,"slug":343},533896,"What payment 7 months from now would be equivalent in value to a $3,300 payment due 23 months from now? The value of money is 2.7% simple interest. Round your answer to 2 decimal places.\nShow all work and how you arrive at the answer..","what-payment-7-months-from-now-would-be-equivalent-in-value-to-a-3-300-payment-due-23-months-from-now-the-value-of-money-is-2-7-simple-interest-round-your-answer-to-2-decimal-places-show-all-work",{"id":345,"category":7,"text_question":346,"slug":347},533960,"B - (-4)=10","b-4-10",{"id":349,"category":7,"text_question":350,"slug":351},534024,"Analyze the following situation\n\n Juan is starting a new business, he indicates that the price of his product corresponds to p=6000−4x\n , where x\n represent the number of tons produced and sold and p\n It is given in dollars.\n\n According to the previous information, what is the maximum income that Juan can obtain with his new product?","analyze-the-following-situation-juan-is-starting-a-new-business-he-indicates-that-the-price-of-his-product-corresponds-to-p-6000-4x-where-x-represent-the-number-of-tons-produced-and-sold-and-p",{"id":353,"category":7,"text_question":354,"slug":355},534103,"Convert 78 percent to a decimal","convert-78-percent-to-a-decimal",{"id":357,"category":7,"text_question":358,"slug":359},534108,"prove that if n odd integer then n^2+5 is even","prove-that-if-n-odd-integer-then-n-2-5-is-even",{"id":361,"category":7,"text_question":362,"slug":363},534138,"Let r: x - y 5 = 0. Determine a general equation of the line s parallel to the line r, which forms an isosceles triangle with area 8 with the line x = 5 and the Ox axis.","let-r-x-y-5-0-determine-a-general-equation-of-the-line-s-parallel-to-the-line-r-which-forms-an-isosceles-triangle-with-area-8-with-the-line-x-5-and-the-ox-axis",{"id":365,"category":7,"text_question":366,"slug":367},534145,"The average number of babies born at a hospital is 6 per hour. What is the probability that three babies are born during a particular 1 hour period?","the-average-number-of-babies-born-at-a-hospital-is-6-per-hour-what-is-the-probability-that-three-babies-are-born-during-a-particular-1-hour-period",{"id":369,"category":7,"text_question":370,"slug":371},534164,"Solve : 15/16 divide 12/8 =x/y","solve-15-16-divide-12-8-x-y",{"id":373,"category":7,"text_question":374,"slug":375},534210,"show step by step simplification:\n(¬𝑑∨((¬b∧c)∨(b∧¬c)))∧((𝑎 ∧ 𝑏) ∨ (¬𝑎 ∧ ¬𝑏))∧(¬𝑐∨((¬𝑑∧𝑎)∨(𝑑∧¬𝑎)))","show-step-by-step-simplification-d-b-c-b-c-a-b-a-b-c-d-a-d-a",{"id":377,"category":7,"text_question":378,"slug":379},534311,"The two sides of the triangle are 12 cm and 5 cm, and the angle between the sides is 60°. Cover the area of the triangle!","the-two-sides-of-the-triangle-are-12-cm-and-5-cm-and-the-angle-between-the-sides-is-60-cover-the-area-of-the-triangle",{"id":381,"category":7,"text_question":382,"slug":383},534378,"Your grandfather has run a small high street pharmacy for 40 years. After much persuasion, he has agreed to open a digital store online. List 5 potential ways to improve sales and/or margins by having a digital pharmacy through the utilisation of historic or new sales data.","your-grandfather-has-run-a-small-high-street-pharmacy-for-40-years-after-much-persuasion-he-has-agreed-to-open-a-digital-store-online-list-5-potential-ways-to-improve-sales-and-or-margins-by-having",{"id":385,"category":7,"text_question":386,"slug":387},534410,"36 cars of the same model that were sold in a\n dealership, and the number of days that each one remained in the dealership yard before being sold is determined. The sample average is 9.75 days, with a sample standard deviation of\n 2, 39 days. Construct a 95% confidence interval for the population mean number of days\n that a car remains on the dealership's forecourt","36-cars-of-the-same-model-that-were-sold-in-a-dealership-and-the-number-of-days-that-each-one-remained-in-the-dealership-yard-before-being-sold-is-determined-the-sample-average-is-9-75-days-with-a",{"id":389,"category":7,"text_question":390,"slug":391},534455,"Total Users with an active Wise account = Total Active Users + Total Users who haven’t transacted\r\nTotal Active Users = Total MCA Users + Total Send Users = Total New Users + Retained Users\r\nTotal New Users = New Send Users + New MCA Users\r\nTotal MCA Users = New MCA Users + Retained Users who transacted this month via MCA\r\nTotal Send Users = New Send Users + Retained Users who transacted this month via Send\r\n\r\nSend CR = Total Send Users / Total Users with an active Wise account\r\nMCA CR = Total MCA Users / Total Users with an active Wise account\r\n\r\nNew Send CR = New Send Users / New Profiles Created in Month\r\nNew MCA CR = New MCA Users / New Profiles Created in Month\r\n\r\nWe have recently witnessed a drop in MCA conversion, but send user conversion is\r\nstable, can you help explain why?","total-users-with-an-active-wise-account-total-active-users-total-users-who-haven-t-transacted-total-active-users-total-mca-users-total-send-users-total-new-users-retained-users-total-new",{"id":296,"category":7,"text_question":297,"slug":298},{"id":394,"category":7,"text_question":395,"slug":396},534510,"Consider the function f(x)=1/2(x+1)^2-3. Use the preceding/following interval method to estimate the\ninstantaneous rate of change at 𝑥 = 1.","consider-the-function-f-x-1-2-x-1-2-3-use-the-preceding-following-interval-method-to-estimate-the-instantaneous-rate-of-change-at-x-1",{"id":398,"category":7,"text_question":399,"slug":400},534522,"if y=1/w^2 yw=2-x; find dy/dx","if-y-1-w-2-yw-2-x-find-dy-dx",{"id":402,"category":7,"text_question":403,"slug":404},534690,"97,210 ➗ 82 division","97-210-82-division",{"$sicons":406},{"bxl:facebook-circle":407,"bxl:instagram":411,"mdi:web":413,"la:apple":415,"ph:google-logo-bold":418,"ph:google-logo":421},{"left":408,"top":408,"width":409,"height":409,"rotate":408,"vFlip":157,"hFlip":157,"body":410},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":408,"top":408,"width":409,"height":409,"rotate":408,"vFlip":157,"hFlip":157,"body":412},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":408,"top":408,"width":409,"height":409,"rotate":408,"vFlip":157,"hFlip":157,"body":414},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":408,"top":408,"width":416,"height":416,"rotate":408,"vFlip":157,"hFlip":157,"body":417},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":408,"top":408,"width":419,"height":419,"rotate":408,"vFlip":157,"hFlip":157,"body":420},256,"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"left":408,"top":408,"width":419,"height":419,"rotate":408,"vFlip":157,"hFlip":157,"body":422},"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"5lK7LS5al0":11,"t96FybqVTi":11,"oVhJaef6Ht":11,"BIDx7q110L":11,"2QISyIzlyM":11,"HGsO2Ckakl":11,"5oSQ2a90xd":11},"/general/current-sizing-involves-developing-some-calculations-and-consulting-some-tables-so-that-sufficient-parameters-can-be-defined-for-using-the-correct-current-for-a-given-application-suppose-you-are-an"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}