To evaluate the definite integral first evaluate the indefinite integral 
  
  
    
    $\int{ 6x{y}^{2}+3{y}^{3} } \mathrm{d} x$
    
  
      
    Use the commutative property to reorder the terms 
  
  
    
    $\int{ 6{y}^{2}x+3{y}^{3} } \mathrm{d} x$
    
  
      
    Use the property of integral 
$\int{ f\left( x \right)\pmg\left( x \right) } \mathrm{d} x=\int{ f\left( x \right) } \mathrm{d} x\pm\int{ g\left( x \right) } \mathrm{d} x$ 
  
  
    
    $\int{ 6{y}^{2}x } \mathrm{d} x+\int{ 3{y}^{3} } \mathrm{d} x$
    
  
      
    Evaluate the indefinite integral 
  
  
    
    $3{x}^{2}{y}^{2}+\int{ 3{y}^{3} } \mathrm{d} x$
    
  
      
    Evaluate the indefinite integral 
  
  
    
    $3{x}^{2}{y}^{2}+3x{y}^{3}$
    
  
      
    To evaluate the definite integral, return the limits of integration 
  
  
    
    $\left. \left( 3{x}^{2}{y}^{2}+3x{y}^{3} \right) \right|_{ -2 }^{ 3 }$
    
  
      
    Use 
$\left. F\left( x \right) \right|_{ a }^{ b }=F\left( b \right)-F\left( a \right)$ to evaluate the expression 
  
  
    
    $3 \times {3}^{2}{y}^{2}+3 \times 3{y}^{3}-\left( 3 \times {\left( -2 \right)}^{2} \times {y}^{2}+3 \times \left( -2 \right){y}^{3} \right)$
    
  
      
    Simplify the expression 
  
  
    
    $15{y}^{2}+15{y}^{3}$