Question

# 97,210 ➗ 82 division

293

likes
1465 views

## Answer to a math question 97,210 ➗ 82 division

Rasheed
4.7
\begin{array}{l}\phantom{82)}\phantom{1}\\82\overline{)97210}\\\end{array}
\begin{array}{l}\phantom{82)}0\phantom{2}\\82\overline{)97210}\\\end{array}
\begin{array}{l}\phantom{82)}0\phantom{3}\\82\overline{)97210}\\\end{array}
\begin{array}{l}\phantom{82)}01\phantom{4}\\82\overline{)97210}\\\phantom{82)}\underline{\phantom{}82\phantom{999}}\\\phantom{82)}15\\\end{array}
\begin{array}{l}\phantom{82)}01\phantom{5}\\82\overline{)97210}\\\phantom{82)}\underline{\phantom{}82\phantom{999}}\\\phantom{82)}152\\\end{array}
\begin{array}{l}\phantom{82)}011\phantom{6}\\82\overline{)97210}\\\phantom{82)}\underline{\phantom{}82\phantom{999}}\\\phantom{82)}152\\\phantom{82)}\underline{\phantom{9}82\phantom{99}}\\\phantom{82)9}70\\\end{array}
\begin{array}{l}\phantom{82)}011\phantom{7}\\82\overline{)97210}\\\phantom{82)}\underline{\phantom{}82\phantom{999}}\\\phantom{82)}152\\\phantom{82)}\underline{\phantom{9}82\phantom{99}}\\\phantom{82)9}701\\\end{array}
\begin{array}{l}\phantom{82)}0118\phantom{8}\\82\overline{)97210}\\\phantom{82)}\underline{\phantom{}82\phantom{999}}\\\phantom{82)}152\\\phantom{82)}\underline{\phantom{9}82\phantom{99}}\\\phantom{82)9}701\\\phantom{82)}\underline{\phantom{9}656\phantom{9}}\\\phantom{82)99}45\\\end{array}
\begin{array}{l}\phantom{82)}0118\phantom{9}\\82\overline{)97210}\\\phantom{82)}\underline{\phantom{}82\phantom{999}}\\\phantom{82)}152\\\phantom{82)}\underline{\phantom{9}82\phantom{99}}\\\phantom{82)9}701\\\phantom{82)}\underline{\phantom{9}656\phantom{9}}\\\phantom{82)99}450\\\end{array}
\begin{array}{l}\phantom{82)}01185\phantom{10}\\82\overline{)97210}\\\phantom{82)}\underline{\phantom{}82\phantom{999}}\\\phantom{82)}152\\\phantom{82)}\underline{\phantom{9}82\phantom{99}}\\\phantom{82)9}701\\\phantom{82)}\underline{\phantom{9}656\phantom{9}}\\\phantom{82)99}450\\\phantom{82)}\underline{\phantom{99}410\phantom{}}\\\phantom{82)999}40\\\end{array}
\text{Quotient: }1185 \text{Reminder: }40

Frequently asked questions $FAQs$
Question: How many different 3-digit numbers can be formed using the digits 2, 4, 6, and 8 without repetition?
+
What is the reciprocal of f$x$ = 1/x at x = 2?
+
What is the result of applying the Chain Rule to the derivative of f$g(x$) when g$x$ = sin$x$ and f$x$ = ln$x$?
+