Question

FUS After takeoff, an aircraft enters a straight-line flight path with constant speed at point P(1.5|9|0.5). speed. In one minute it travels a distance vector v=(-1 5 0.2) back. Information in km. a) (1) Determine the speed of the aircraft in km/h. (2) After 4 minutes the plane reaches a big city. Calculate the altitude at this time. b) At an altitude of 2500 m the pilot switches to autopilot. Calculate the coordinates of the point where the aircraft is at this moment and state how much time has passed since the aircraft was at point P. c) Between the points A(-5|38|0.1), B(-4|40|0.11) and C (-7|39|0.1) there is a small natural protected area in the shape of a triangle. (1) Examine triangle ABC for special features. (2) Check whether the aircraft is flying over route AB and, if so, at what distance

60

likes
301 views

Answer to a math question FUS After takeoff, an aircraft enters a straight-line flight path with constant speed at point P(1.5|9|0.5). speed. In one minute it travels a distance vector v=(-1 5 0.2) back. Information in km. a) (1) Determine the speed of the aircraft in km/h. (2) After 4 minutes the plane reaches a big city. Calculate the altitude at this time. b) At an altitude of 2500 m the pilot switches to autopilot. Calculate the coordinates of the point where the aircraft is at this moment and state how much time has passed since the aircraft was at point P. c) Between the points A(-5|38|0.1), B(-4|40|0.11) and C (-7|39|0.1) there is a small natural protected area in the shape of a triangle. (1) Examine triangle ABC for special features. (2) Check whether the aircraft is flying over route AB and, if so, at what distance

Expert avatar
Santino
4.5
112 Answers
a)
(1) Zur Bestimmung der Geschwindigkeit des Flugzeugs in km/h teilen wir die zurückgelegte Strecke durch die Zeit:
\text{Geschwindigkeit } = \frac{\text{Strecke}}{\text{Zeit}} = \frac{\|\textbf{v}\|}{\text{Zeit}}

Gegeben: $\textbf{v} = (-1, 5, 0.2)$ km und Zeit = 1 Minute = 1/60 Stunde.

Berechnung der Geschwindigkeit:
\|\textbf{v}\| = \sqrt{(-1)^2 + 5^2 + 0.2^2} = \sqrt{1 + 25 + 0.04} = \sqrt{26.04} \approx 5.10 \text{ km}
\text{Geschwindigkeit} = \frac{5.10}{1/60} = 5.1 \times 60 = 306 \text{ km/h}

(2) Die Flughöhe nach 4 Minuten beträgt:
Höhe = 9 + (4 * 0.2) = 9.8 km

b)
Bei einer Höhe von 2500 m = 2.5 km schalten wir auf Autopilot um.

Die Koordinaten des Flugzeugs ergeben sich durch Addition des Vektors $\textbf{v}$ zum Punkt P:
(1 + (-1), 5 + 5, 0.5 + 0.2) = (0, 10, 0.7)

Die Zeit, die seit dem Punkt P vergangen ist, beträgt:
\frac{\sqrt{(0-1)^2 + (10-5)^2 + (0.7-0.5)^2}}{5.1} = \frac{\sqrt{1 + 25 + 0.04}}{5.1} \approx \frac{\sqrt{26.04}}{5.1} \approx \frac{5.1}{5.1} \approx 1 \text{ Stunde}

c)
(1)
Das Dreieck ABC ist ein gleichschenkliges Dreieck, da AB und BC jeweils die gleiche Länge haben.

(2)
Um zu prüfen, ob das Flugzeug die Strecke AB überfliegt, betrachten wir den Abstand des Flugzeugs von der Linie, die durch die Punkte A und B verläuft. Der Abstand kann durch den Normalenvektor auf die Ebene von A und B bestimmt werden.

Den Normalenvektor der Ebene bestimmen:
\textbf{n} = (A-B) \times (A-C) = \begin{pmatrix} -5+4 \ 38-40 \ 0.1-0.11 \end{pmatrix} \times \begin{pmatrix} -5+7 \ 38-39 \ 0.1-0.1 \end{pmatrix} = \begin{pmatrix} -1 \ -2 \ -0.01 \end{pmatrix} \times \begin{pmatrix} 2 \ -1 \ 0 \end{pmatrix}
= \begin{pmatrix} 0.01 \ -0.02 \ -3 \end{pmatrix}

Der Abstand des Flugzeugs von der Ebene beträgt:
\frac{| \textbf{n} \cdot (P - A) |}{\|\textbf{n}\|} = \frac{| \begin{pmatrix} 0.01 \ -0.02 \ -3 \end{pmatrix} \cdot \begin{pmatrix} 1 \ 5 \ 0.5 \end{pmatrix} - \begin{pmatrix} 0.01 \ -0.02 \ -3 \end{pmatrix} \cdot \begin{pmatrix} -5 \ 38 \ 0.1 \end{pmatrix} |}{\sqrt{0.01^2 + (-0.02)^2 + (-3)^2}}

= \frac{| (0.01 \cdot 1 + (-0.02) \cdot 5 + (-3) \cdot 0.5) - (0.01 \cdot (-5) + (-0.02) \cdot 38 + (-3) \cdot 0.1) |}{\sqrt{0.01^2 + (-0.02)^2 + (-3)^2}}

= \frac{| 0.01 - 0.1 + 1.5 - 0.76 |}{\sqrt{0.01^2 + (-0.02)^2 + (-3)^2}} = \frac{| 2.67 |}{\sqrt{9.05}} \approx \frac{2.67}{3} \approx 0.89 \text{ km}

Antwort: a) (1) Die Geschwindigkeit des Flugzeugs beträgt 306 km/h.
b) Nach 4 Minuten beträgt die Flughöhe 9.8 km. Die Koordinaten des Flugzeugs sind (0, 10, 0.7) und es ist 1 Stunde vergangen, seit es sich im Punkt P befand.
c) (1) Das Dreieck ABC ist gleichschenklig.
(2) Das Flugzeug überfliegt die Strecke AB in einem Abstand von etwa 0.89 km.

Frequently asked questions (FAQs)
Find the length of the side opposite angle A in a right-angled triangle with angle A = 45 degrees and hypotenuse = 10 units.
+
What is the perimeter of an isosceles triangle with side lengths 10 cm, base 12 cm?
+
What is the limit as x approaches 2 of (3x + 2)?
+
New questions in Mathematics
𝑦 = ( 𝑥2 − 3) (𝑥3 + 2 𝑥 + 1)
Karina has a plot of 5000 square meters in which she has decided that 60% of it will be used to plant vegetables. Of this part, 12% will be dedicated to planting lettuce. How much surface area of the plot will be used to grow lettuce?
Serum cholesterol levels in men aged 18 to 24 years have a normal distribution with a mean 178.1mg/100 ml and standard deviation 40.7 mg/100 ml. The. Randomly choosing a man between 18 and 24 years old, determine the probability of your serum cholesterol level is less than 200. B. Whether a serum cholesterol level should be judged too high if it is above 7% higher, determine the value of the separation level of levels that are too high. w. Determine a 90% reference range for serum cholesterol level among men from 18 to 24 years old.
There are 162 students enrolled in the basic mathematics course. If the number of women is 8 times the number of men, how many women are there in the basic mathematics course?
Reparameterize the curve r(t)= cos(t)i without (t)j (t)k by the arc length.
-3(-4x+5)=-6(7x-8)+9-10x
What is the total tolerance for a dimension from 1.996" to 2.026*?
Suppose that you use 4.29 g of Iron in the chemical reaction: 2Fe(s) + 3 Cu2 + (aq) 2Fe 3 + (aq) + 3Cu(s ) - . What is the theoretical yield of Cu (s), in grams?
19) If the temperature of -8°C decreases by 12°C, how much will it be? a)-20°C -4°C c) 4°C d) 20°C
30y - y . y = 144
(2m+3)(4m+3)=0
X³-27
Find the number of pounds of nails required for 17850 square feet of drywall if each thousand square feet requires 4.5 pounds of nails.
a survey showed that 3 out of 7 voters would vote in an election. based on this survey, how many people would vote in a city with 25,000 people?
36 cars of the same model that were sold in a dealership, and the number of days that each one remained in the dealership yard before being sold is determined. The sample average is 9.75 days, with a sample standard deviation of 2, 39 days. Construct a 95% confidence interval for the population mean number of days that a car remains on the dealership's forecourt
Given a circle 𝑘(𝑆; 𝑟 = 4 𝑐𝑚) and a line |𝐴𝐵| = 2 𝑐𝑚. Determine and construct the set of all centers of circles that touch circle 𝑘 and have radius 𝑟 = |𝐴𝐵|
Farm Grown, Inc., produces cases of perishable food products. Each case contains an assortment of vegetables and other farm products. Each case costs $5 and sells for $15. If there are any not sold by the end of the day, they are sold to a large food processing company for $3 a case. The probability that daily demand will be 100 cases is 0.30, the probability that daily demand will be 200 cases is 0.40, and the probability that daily demand will be 300 cases is 0.30. Farm Grown has a policy of always satisfying customer demands. If its own supply of cases is less than the demand, it buys the necessary vegetables from a competitor. The estimated cost of doing this is $16 per case. (a) Draw a decision table for this problem (b) What do you recommend?
1. The cost to transport 250 packages of cement 120 kilometers is $600. What will be the cost to transport 500 packages 300 kilometers?
Slope (7,3) and (9,5)
5 1/9 + 2 2/3