Question

FUS After takeoff, an aircraft enters a straight-line flight path with constant speed at point P(1.5|9|0.5). speed. In one minute it travels a distance vector v=(-1 5 0.2) back. Information in km. a) (1) Determine the speed of the aircraft in km/h. (2) After 4 minutes the plane reaches a big city. Calculate the altitude at this time. b) At an altitude of 2500 m the pilot switches to autopilot. Calculate the coordinates of the point where the aircraft is at this moment and state how much time has passed since the aircraft was at point P. c) Between the points A(-5|38|0.1), B(-4|40|0.11) and C (-7|39|0.1) there is a small natural protected area in the shape of a triangle. (1) Examine triangle ABC for special features. (2) Check whether the aircraft is flying over route AB and, if so, at what distance

60

likes
301 views

Answer to a math question FUS After takeoff, an aircraft enters a straight-line flight path with constant speed at point P(1.5|9|0.5). speed. In one minute it travels a distance vector v=(-1 5 0.2) back. Information in km. a) (1) Determine the speed of the aircraft in km/h. (2) After 4 minutes the plane reaches a big city. Calculate the altitude at this time. b) At an altitude of 2500 m the pilot switches to autopilot. Calculate the coordinates of the point where the aircraft is at this moment and state how much time has passed since the aircraft was at point P. c) Between the points A(-5|38|0.1), B(-4|40|0.11) and C (-7|39|0.1) there is a small natural protected area in the shape of a triangle. (1) Examine triangle ABC for special features. (2) Check whether the aircraft is flying over route AB and, if so, at what distance

Expert avatar
Santino
4.5
112 Answers
a)
(1) Zur Bestimmung der Geschwindigkeit des Flugzeugs in km/h teilen wir die zurückgelegte Strecke durch die Zeit:
\text{Geschwindigkeit } = \frac{\text{Strecke}}{\text{Zeit}} = \frac{\|\textbf{v}\|}{\text{Zeit}}

Gegeben: $\textbf{v} = (-1, 5, 0.2)$ km und Zeit = 1 Minute = 1/60 Stunde.

Berechnung der Geschwindigkeit:
\|\textbf{v}\| = \sqrt{(-1)^2 + 5^2 + 0.2^2} = \sqrt{1 + 25 + 0.04} = \sqrt{26.04} \approx 5.10 \text{ km}
\text{Geschwindigkeit} = \frac{5.10}{1/60} = 5.1 \times 60 = 306 \text{ km/h}

(2) Die Flughöhe nach 4 Minuten beträgt:
Höhe = 9 + (4 * 0.2) = 9.8 km

b)
Bei einer Höhe von 2500 m = 2.5 km schalten wir auf Autopilot um.

Die Koordinaten des Flugzeugs ergeben sich durch Addition des Vektors $\textbf{v}$ zum Punkt P:
(1 + (-1), 5 + 5, 0.5 + 0.2) = (0, 10, 0.7)

Die Zeit, die seit dem Punkt P vergangen ist, beträgt:
\frac{\sqrt{(0-1)^2 + (10-5)^2 + (0.7-0.5)^2}}{5.1} = \frac{\sqrt{1 + 25 + 0.04}}{5.1} \approx \frac{\sqrt{26.04}}{5.1} \approx \frac{5.1}{5.1} \approx 1 \text{ Stunde}

c)
(1)
Das Dreieck ABC ist ein gleichschenkliges Dreieck, da AB und BC jeweils die gleiche Länge haben.

(2)
Um zu prüfen, ob das Flugzeug die Strecke AB überfliegt, betrachten wir den Abstand des Flugzeugs von der Linie, die durch die Punkte A und B verläuft. Der Abstand kann durch den Normalenvektor auf die Ebene von A und B bestimmt werden.

Den Normalenvektor der Ebene bestimmen:
\textbf{n} = (A-B) \times (A-C) = \begin{pmatrix} -5+4 \ 38-40 \ 0.1-0.11 \end{pmatrix} \times \begin{pmatrix} -5+7 \ 38-39 \ 0.1-0.1 \end{pmatrix} = \begin{pmatrix} -1 \ -2 \ -0.01 \end{pmatrix} \times \begin{pmatrix} 2 \ -1 \ 0 \end{pmatrix}
= \begin{pmatrix} 0.01 \ -0.02 \ -3 \end{pmatrix}

Der Abstand des Flugzeugs von der Ebene beträgt:
\frac{| \textbf{n} \cdot (P - A) |}{\|\textbf{n}\|} = \frac{| \begin{pmatrix} 0.01 \ -0.02 \ -3 \end{pmatrix} \cdot \begin{pmatrix} 1 \ 5 \ 0.5 \end{pmatrix} - \begin{pmatrix} 0.01 \ -0.02 \ -3 \end{pmatrix} \cdot \begin{pmatrix} -5 \ 38 \ 0.1 \end{pmatrix} |}{\sqrt{0.01^2 + (-0.02)^2 + (-3)^2}}

= \frac{| (0.01 \cdot 1 + (-0.02) \cdot 5 + (-3) \cdot 0.5) - (0.01 \cdot (-5) + (-0.02) \cdot 38 + (-3) \cdot 0.1) |}{\sqrt{0.01^2 + (-0.02)^2 + (-3)^2}}

= \frac{| 0.01 - 0.1 + 1.5 - 0.76 |}{\sqrt{0.01^2 + (-0.02)^2 + (-3)^2}} = \frac{| 2.67 |}{\sqrt{9.05}} \approx \frac{2.67}{3} \approx 0.89 \text{ km}

Antwort: a) (1) Die Geschwindigkeit des Flugzeugs beträgt 306 km/h.
b) Nach 4 Minuten beträgt die Flughöhe 9.8 km. Die Koordinaten des Flugzeugs sind (0, 10, 0.7) und es ist 1 Stunde vergangen, seit es sich im Punkt P befand.
c) (1) Das Dreieck ABC ist gleichschenklig.
(2) Das Flugzeug überfliegt die Strecke AB in einem Abstand von etwa 0.89 km.

Frequently asked questions (FAQs)
Question: What is the value of f(x) = 3x^2 + 2x - 5 when x = 4?
+
What is the equivalent of 120 degrees in radians?
+
How many different ways can 5 people be arranged in a row?
+
New questions in Mathematics
find the value of the tangent if it is known that the cos@= 1 2 and the sine is negative. must perform procedures.
2+2
1/2x +3 <4x-7
Imagine that you are in an electronics store and you want to calculate the final price of a product after applying a discount. The product you are interested in has an original price of $1000 MN, but, for today, the store offers a 25% discount on all its products. Develop an algorithm that allows you to calculate the final price you will pay, but first point out the elements.
Determine the equations of the recipes that pass through the following pairs of points P1 (2;-1) and p2 (4;-1)
Suppose 56% of politicians are lawyers if a random sample of size 873 is selected, what is the probability that the proportion of politicians who are lawyers will be less than 55% round your answer to four decimal places
To make brine, José buys 1 kg of salt and pays 12 pesos. If he buys 4 kg, they charge him 48 pesos, but for 100 pesos they sell him 9 kg. What is the constant of proportionality?
In a store, a person carries 14 kilos of rice and 28 kilos of flour. In what ratio are the kilos found? (Remember to simplify until you reach an irreducible fraction)
If you randomly selected one person from the 900 subjects in this study, what is the probability that the person exhibits the minimum BMI?
A test has 5 multiple choice questions. Each question has 4 alternatives, only one of which is correct. A student who did not study for the test randomly chooses one alternative for each question.(a) What is the probability of him getting a zero on the test?(b) What is the probability of him getting a three or more? The maximum mark for the test is 5, with each question worth one point.
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
Log5 625
If X1 and X2 are independent standard normal variables, find P(X1^2 + X2^2 > 2.41)
Find the center coordinates and radius of a circle for an equation written as: 3x2 + 3y2 - 6y = —12× + 24
cube root of 56
2X+2=8
Farm Grown, Inc., produces cases of perishable food products. Each case contains an assortment of vegetables and other farm products. Each case costs $5 and sells for $15. If there are any not sold by the end of the day, they are sold to a large food processing company for $3 a case. The probability that daily demand will be 100 cases is 0.30, the probability that daily demand will be 200 cases is 0.40, and the probability that daily demand will be 300 cases is 0.30. Farm Grown has a policy of always satisfying customer demands. If its own supply of cases is less than the demand, it buys the necessary vegetables from a competitor. The estimated cost of doing this is $16 per case. (a) Draw a decision table for this problem (b) What do you recommend?
The following incoming payments show up at a tax inspection: 25 000€ on 19.01.2008, 140 000€ on 27.03.2008 and 19 000€ on a date that which is illegible, and 60 000€ on 15.06.2008. On which date did the payment of the 19 000€ appear, if on 30.06.2008 the money on the account (incl. interest at 4%) is 246 088.89€? Use simple interest and 30E/360 DCC. Solution: 45 days, 15.05.08
Mark is gluing a ribbon around the sides of a picture frame. The frame is 11 inches long and 7 includes wide. How much ribbon does Mark need?
Find the number of liters of water needed to reduce 9 liters of lotion. shave containing 50% alcohol to a lotion containing 30% alcohol.