Question

FUS After takeoff, an aircraft enters a straight-line flight path with constant speed at point P(1.5|9|0.5). speed. In one minute it travels a distance vector v=(-1 5 0.2) back. Information in km. a) (1) Determine the speed of the aircraft in km/h. (2) After 4 minutes the plane reaches a big city. Calculate the altitude at this time. b) At an altitude of 2500 m the pilot switches to autopilot. Calculate the coordinates of the point where the aircraft is at this moment and state how much time has passed since the aircraft was at point P. c) Between the points A(-5|38|0.1), B(-4|40|0.11) and C (-7|39|0.1) there is a small natural protected area in the shape of a triangle. (1) Examine triangle ABC for special features. (2) Check whether the aircraft is flying over route AB and, if so, at what distance

60

likes
301 views

Answer to a math question FUS After takeoff, an aircraft enters a straight-line flight path with constant speed at point P(1.5|9|0.5). speed. In one minute it travels a distance vector v=(-1 5 0.2) back. Information in km. a) (1) Determine the speed of the aircraft in km/h. (2) After 4 minutes the plane reaches a big city. Calculate the altitude at this time. b) At an altitude of 2500 m the pilot switches to autopilot. Calculate the coordinates of the point where the aircraft is at this moment and state how much time has passed since the aircraft was at point P. c) Between the points A(-5|38|0.1), B(-4|40|0.11) and C (-7|39|0.1) there is a small natural protected area in the shape of a triangle. (1) Examine triangle ABC for special features. (2) Check whether the aircraft is flying over route AB and, if so, at what distance

Expert avatar
Santino
4.5
112 Answers
a)
(1) Zur Bestimmung der Geschwindigkeit des Flugzeugs in km/h teilen wir die zurückgelegte Strecke durch die Zeit:
\text{Geschwindigkeit } = \frac{\text{Strecke}}{\text{Zeit}} = \frac{\|\textbf{v}\|}{\text{Zeit}}

Gegeben: $\textbf{v} = (-1, 5, 0.2)$ km und Zeit = 1 Minute = 1/60 Stunde.

Berechnung der Geschwindigkeit:
\|\textbf{v}\| = \sqrt{(-1)^2 + 5^2 + 0.2^2} = \sqrt{1 + 25 + 0.04} = \sqrt{26.04} \approx 5.10 \text{ km}
\text{Geschwindigkeit} = \frac{5.10}{1/60} = 5.1 \times 60 = 306 \text{ km/h}

(2) Die Flughöhe nach 4 Minuten beträgt:
Höhe = 9 + (4 * 0.2) = 9.8 km

b)
Bei einer Höhe von 2500 m = 2.5 km schalten wir auf Autopilot um.

Die Koordinaten des Flugzeugs ergeben sich durch Addition des Vektors $\textbf{v}$ zum Punkt P:
(1 + (-1), 5 + 5, 0.5 + 0.2) = (0, 10, 0.7)

Die Zeit, die seit dem Punkt P vergangen ist, beträgt:
\frac{\sqrt{(0-1)^2 + (10-5)^2 + (0.7-0.5)^2}}{5.1} = \frac{\sqrt{1 + 25 + 0.04}}{5.1} \approx \frac{\sqrt{26.04}}{5.1} \approx \frac{5.1}{5.1} \approx 1 \text{ Stunde}

c)
(1)
Das Dreieck ABC ist ein gleichschenkliges Dreieck, da AB und BC jeweils die gleiche Länge haben.

(2)
Um zu prüfen, ob das Flugzeug die Strecke AB überfliegt, betrachten wir den Abstand des Flugzeugs von der Linie, die durch die Punkte A und B verläuft. Der Abstand kann durch den Normalenvektor auf die Ebene von A und B bestimmt werden.

Den Normalenvektor der Ebene bestimmen:
\textbf{n} = (A-B) \times (A-C) = \begin{pmatrix} -5+4 \ 38-40 \ 0.1-0.11 \end{pmatrix} \times \begin{pmatrix} -5+7 \ 38-39 \ 0.1-0.1 \end{pmatrix} = \begin{pmatrix} -1 \ -2 \ -0.01 \end{pmatrix} \times \begin{pmatrix} 2 \ -1 \ 0 \end{pmatrix}
= \begin{pmatrix} 0.01 \ -0.02 \ -3 \end{pmatrix}

Der Abstand des Flugzeugs von der Ebene beträgt:
\frac{| \textbf{n} \cdot (P - A) |}{\|\textbf{n}\|} = \frac{| \begin{pmatrix} 0.01 \ -0.02 \ -3 \end{pmatrix} \cdot \begin{pmatrix} 1 \ 5 \ 0.5 \end{pmatrix} - \begin{pmatrix} 0.01 \ -0.02 \ -3 \end{pmatrix} \cdot \begin{pmatrix} -5 \ 38 \ 0.1 \end{pmatrix} |}{\sqrt{0.01^2 + (-0.02)^2 + (-3)^2}}

= \frac{| (0.01 \cdot 1 + (-0.02) \cdot 5 + (-3) \cdot 0.5) - (0.01 \cdot (-5) + (-0.02) \cdot 38 + (-3) \cdot 0.1) |}{\sqrt{0.01^2 + (-0.02)^2 + (-3)^2}}

= \frac{| 0.01 - 0.1 + 1.5 - 0.76 |}{\sqrt{0.01^2 + (-0.02)^2 + (-3)^2}} = \frac{| 2.67 |}{\sqrt{9.05}} \approx \frac{2.67}{3} \approx 0.89 \text{ km}

Antwort: a) (1) Die Geschwindigkeit des Flugzeugs beträgt 306 km/h.
b) Nach 4 Minuten beträgt die Flughöhe 9.8 km. Die Koordinaten des Flugzeugs sind (0, 10, 0.7) und es ist 1 Stunde vergangen, seit es sich im Punkt P befand.
c) (1) Das Dreieck ABC ist gleichschenklig.
(2) Das Flugzeug überfliegt die Strecke AB in einem Abstand von etwa 0.89 km.

Frequently asked questions (FAQs)
Math Question: Find the limit as x approaches 1 of (x^3 - 1) / (x^4 - 2x^2 + 1) using L'Hospital's Rule. (
+
What is the limit as x approaches 5 of (3x-15)/(x^2-25)?
+
What is the slope-intercept equation of a line that passes through the points (2, 5) and (4, 9)?
+
New questions in Mathematics
Find an arc length parameterization of the curve that has the same orientation as the given curve and for which the reference point corresponds to t=0. Use an arc length s as a parameter. r(t) = 3(e^t) cos (t)i + 3(e^t)sin(t)j; 0<=t<=(3.14/2)
Let 𝑢 = 𝑓(𝑥, 𝑦) = (𝑒^𝑥)𝑠𝑒𝑛(3𝑦). Check if 9((𝜕^2) u / 𝜕(𝑥^2)) +((𝜕^2) 𝑢 / 𝜕(𝑦^2)) = 0
CASE 6-1: PREPARE A PRODUCTION PLAN: WHAT PROBLEMS ARRIVE? Midwest Plastics Company has conducted profit planning for several years. The president stated (with justification) that inventory control and planning had not been satisfactory, which was mainly due to poor planning of production and inventory budgets. Please analyze and provide recommendations, in detail, on the issue regarding the 20B profit plan, which is now being prepared. Their analysis and recommendations will be presented to the executive committee. Despite the seasonality factor, the sales department has been successful in developing a sales plan, on a monthly basis, for each year. The following sales data is available for 20B. 1. Sales plan summary for 20B: 2. Finished goods inventory, as of January 1, 20B, is 96,000 units. 3. Work-in-process inventory will remain constant. 4. Actual annual sales in 20A, including the estimate for December, were 350,000 units. 5. The average finished goods inventory during 20A was 70,000 units. IT IS REQUESTED. 1. Prepare the annual production budget, assuming that management policy is to budget ending finished goods inventory at a standard quantity, based on the ratio of historical sales of 20A to inventory turnover. 2. Prepare a schedule showing sales, production, and inventory levels for each month, assuming: 1) stable inventory, 2) stable production, and 3) recommended inventory-production levels. In developing your recommendations, assume that the following policies have been established: a) The president has set the policy that a maximum inventory of 85,000 units and a minimum inventory of 75,000 units should be used, except in abnormal circumstances. b) A stable level of production is definitely preferred, except that during the holiday season in July and August, production may be reduced by 25 percent. Likewise, a variation in production of 7.5 percent above and below the average level is acceptable. 3. What are the main problems faced by the company in production planning? Make your general recommendations.
5(4x+3)=75
the value of sin 178°58&#39;
A car that starts from rest moves for 11 min, reaching a speed of 135 km/h, calculate the acceleration it had
3x+5y=11 2x-3y=1
The length and breadth of my rectangular vegetable garden is 12,5m and 7,25m respectively. What is the perimeter of the garden?
How long will it take for $900 to become $5000 at an annual rate of 11.15% compounded bimonthly?
2x2 and how much?
find x in the equation 2x-4=6
20% of 3500
What is 75 percent less than 60
Sections of steel tube having an inside diameter of 9 inches, are filled with concrete to support the main floor girder in a building. If these posts are 12 feet long and there are 18 of them, how many cubic yards of concrete are required for the job?
A hardware bill totals $857.63 with discounts of 5% and 3%. What is the net cost of the Material ?
17. A loan for $104259 is taken out for 10 years with an annual interest rate of 9.4%, compounded quarterly. What quarterly payment is required to pay the loan off in 10 years? Enter to the nearest cent (two decimals). Do not use $ signs or commas in the answer.
A factory produces glass for windows. The thickness X of an arbitrarily selected pane of glass is assumed to be Normally distributed with expectation μ = 4.10 and standard deviation σ = 0.04. Expectation and Standard deviation is measured in millimeters. What is the probability that an arbitrary route has a thickness less than 4.00 mm?
The mean of 4 numbers is 5 and the mean of 3 different numbers is 12. What is the mean of the 7 numbers together? Produce an algebraic solution. Guess and check is acceptable.
question 1 Consider a sample space S, and two events A and B such that P(A ∩ B) = 0.2, P(A ∪ B) = 0.6, P(B ∪ ̄A) = 0.8 (a) [0.5 points] Calculate P (A). (b) [0.5 points] Calculate P (B)
-Please answer to the following questions: What is the price elasticity of demand? Can you explain it in your own words? What is the price elasticity of supply? Can you explain it in your own words? What is the relationship between price elasticity and position on the demand curve? For example, as you move up the demand curve to higher prices and lower quantities, what happens to the measured elasticity? How would you explain that? B-Assume that the supply of low-skilled workers is fairly elastic, but the employers’ demand for such workers is fairly inelastic. If the policy goal is to expand employment for low-skilled workers, is it better to focus on policy tools to shift the supply of unskilled labor or on tools to shift the demand for unskilled labor? What if the policy goal is to raise wages for this group? Explain your answers with supply and demand diagrams. Make sure to properly cite and reference your academic or peer-reviewed sources (minimum 2).