Question

When taking a test with m closed answers, a student knows the correct answer with probability p, otherwise he chooses one of the possible answers at random. What is the probability that the student knows the correct answer given that he answered the question correctly.

182

likes
912 views

Answer to a math question When taking a test with m closed answers, a student knows the correct answer with probability p, otherwise he chooses one of the possible answers at random. What is the probability that the student knows the correct answer given that he answered the question correctly.

Expert avatar
Frederik
4.6
100 Answers
To solve this problem, we can use Bayes' theorem.

Let's denote the following events:
A: The event that the student knows the correct answer.
B: The event that the student answered the question correctly.

We are asked to find P(A|B), the probability that the student knows the correct answer given that he answered the question correctly.

According to Bayes' theorem, we have:

P(A|B) = \frac{{P(B|A) \cdot P(A)}}{{P(B)}}

We can calculate each of these probabilities step-by-step:

1. P(A) is the probability that the student knows the correct answer. This is given as p.
2. P(B|A) is the probability that the student answered the question correctly given that he knows the correct answer. This is equal to 1 since we are assuming that the student knows the correct answer.
3. P(B) is the total probability that the student answered the question correctly.

To calculate P(B), we need to consider two cases:
a) The student knows the correct answer, which happens with probability p.
b) The student does not know the correct answer, which happens with probability 1 - p. In this case, the probability of answering correctly by randomly choosing one of the possible answers is 1/m.

Therefore, we have:

P(B) = P(A) \cdot 1 + (1 - P(A)) \cdot \frac{1}{m} = p + \frac{1 - p}{m}

Now we can substitute these values back into Bayes' theorem to find P(A|B):

P(A|B) = \frac{{1 \cdot p}}{{p + \frac{1 - p}{m}}} = \frac{{p \cdot m}}{{pm + 1 - p}}

Answer: The probability that the student knows the correct answer given that he answered the question correctly is \frac{{p \cdot m}}{{pm + 1 - p}}

Frequently asked questions (FAQs)
What is the area of a triangle with side lengths 13, 14, and 15 using Heron's formula?
+
Question: What is the period and amplitude of the sine function f(x) = sin(x)?
+
What are the solutions to the quadratic equation x^2 + 5x - 36 = 0?
+
New questions in Mathematics
8xΒ²-30x-10xΒ²+70x=-30x+10xΒ²-20xΒ²
What payment 7 months from now would be equivalent in value to a $3,300 payment due 23 months from now? The value of money is 2.7% simple interest. Round your answer to 2 decimal places. Show all work and how you arrive at the answer..
If L (-2, -5) reflected across y = -4. What are the coordinates of L?
How many different ways can a psychology student select 5 subjects from a pool of 20 subjects and assign each one to a different experiment?
The durability of a tire of a certain brand is a Normal random variable with an average of 64,000 km and a standard deviation of 9,000 km. Assuming independence between tires, what is the probability that the 4 tires on a car will last more than 58,000 km?
The thermal representation f(x) = 20 times 0.8 to the power of x is known from an exponential function f. Specify the intersection point with the y-axis
reduce the expression (7.5x 12)Γ·0.3
User Before the election, a poll of 60 voters found the proportion who support the Green candidate to be 25%. Calculate the 90% confidence interval for the population parameter. (Give your answers as a PERCENTAGE rounded to TWO DECIMAL PLACES: exclude any trailing zeros and DO NOT INSERT THE % SIGN) Give the lower limit of the 90% confidence interval Give the upper limit of the 90% confidence interval
Shows two blocks, masses 4.3 kg and 5.4 kg, being pushed across a frictionless surface by a 22.5-N horizontal force applied to the 4.3-kg block. A. What is the acceleration of the blocks? B. What is the force of the 4.3-kg block on the 5.4 -kg block? C. What is the force of the 5.4 -kg block on the 4.3 -kg block?
7=-4/3y -1
The simple average of 15 , 30 , 40 , and 45 is
cube root of 56
A hardware bill totals $857.63 with discounts of 5% and 3%. What is the net cost of the Material ?
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) βˆ’ f(p)| ≀ M|g(x) βˆ’ g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
How to convert 45 kg into grams
How to factorise 5y^2 -7y -52
Find the set of points formed by the expression πœ‹<|π‘§βˆ’4+2𝑖|<3πœ‹.
2+2020202
-Please answer to the following questions: What is the price elasticity of demand? Can you explain it in your own words? What is the price elasticity of supply? Can you explain it in your own words? What is the relationship between price elasticity and position on the demand curve? For example, as you move up the demand curve to higher prices and lower quantities, what happens to the measured elasticity? How would you explain that? B-Assume that the supply of low-skilled workers is fairly elastic, but the employers’ demand for such workers is fairly inelastic. If the policy goal is to expand employment for low-skilled workers, is it better to focus on policy tools to shift the supply of unskilled labor or on tools to shift the demand for unskilled labor? What if the policy goal is to raise wages for this group? Explain your answers with supply and demand diagrams. Make sure to properly cite and reference your academic or peer-reviewed sources (minimum 2).
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ΒΏ by: T (t )=(20 t +10)eβˆ’0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(βˆ’10 t +15)eβˆ’0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10βˆ’2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ΒΏ by: T (t )=(20 t +10)eβˆ’0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(βˆ’10 t +15)eβˆ’0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10βˆ’2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.