Question

Calculate the area of the parallelogram with adjacent vertices (1,4, −2), (−3,1,6) 𝑦 (1, −2,3)

61

likes307 views

Hank

4.8

55 Answers

To calculate the area of a parallelogram with adjacent vertices, we can use the formula:

\text{{Area}} = \left| \vec{u} \times \vec{v} \right|

where\vec{u} and \vec{v} are two vectors formed from the adjacent vertices of the parallelogram.

First, let's find the vectors\vec{u} and \vec{v} using the given vertices.

\vec{u} = \begin{pmatrix} -3 - 1 \ 1 - 4 \ 6 - (-2) \end{pmatrix} = \begin{pmatrix} -4 \ -3 \ 8 \end{pmatrix}

\vec{v} = \begin{pmatrix} 1 - 1 \ -2 - 4 \ 3 - (-2) \end{pmatrix} = \begin{pmatrix} 0 \ -6 \ 5 \end{pmatrix}

Next, let's calculate the cross product of\vec{u} and \vec{v} :

\vec{u} \times \vec{v} = \begin{pmatrix} -4 \ -3 \ 8 \end{pmatrix} \times \begin{pmatrix} 0 \ -6 \ 5 \end{pmatrix} = \begin{pmatrix} (-3) \cdot 5 - 8 \cdot (-6) \ 8 \cdot 0 - (-4) \cdot 5 \ (-4) \cdot (-6) - (-3) \cdot 0 \end{pmatrix} = \begin{pmatrix} 57 \ 20 \ -24 \end{pmatrix}

Now, let's find the magnitude (length) of the cross product vector:

\left| \vec{u} \times \vec{v} \right| = \sqrt{57^2 + 20^2 + (-24)^2} = \sqrt{3249 + 400 + 576} = \sqrt{4225} = 65

Therefore, the area of the parallelogram is 65 square units.

Answer: The area of the parallelogram is 65 square units.

where

First, let's find the vectors

Next, let's calculate the cross product of

Now, let's find the magnitude (length) of the cross product vector:

Therefore, the area of the parallelogram is 65 square units.

Answer: The area of the parallelogram is 65 square units.

Frequently asked questions (FAQs)

Find the value of x such that the reciprocal function f(x) = 1/x has a vertical asymptote at x = 3.

+

What is the maximum value of the function f(x) = -5x^2 + 80x + 50 on the interval [0, 10]?

+

Find the circumference of a circle with radius 6 cm.

+

New questions in Mathematics