Question

Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.

154

likes
770 views

Answer to a math question Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.

Expert avatar
Cristian
4.7
115 Answers
Estamos considerando una matrícula de automóvil que consta de 2 letras y 2 dígitos, con la restricción de que el primer dígito no puede ser cero. Disponemos de 26 letras (AZ) y 10 dígitos (0-9) para elegir. Para determinar el número total de matrículas diferentes que se pueden grabar, debemos considerar las posibilidades para cada posición: Para la primera letra, tenemos 26 opciones (AZ) ya que se puede utilizar cualquier letra. Para la segunda letra, también tenemos 26 opciones ya que se puede utilizar cualquier letra. Para el primer dígito, tenemos 9 opciones (1-9) ya que el cero no está incluido como opción. Para el segundo dígito, tenemos 10 opciones (0-9) ya que se permite cero para el segundo dígito. Para encontrar el número total de matrículas diferentes, multiplicamos el número de opciones para cada posición: Número total de platos = Número de opciones para la primera letra * Número de opciones para la segunda letra * Número de opciones para el primer dígito * Número de opciones para el segundo dígito Número total de platos = 26 * 26 * 9 * 10 Número total de placas = 60.840 Por lo tanto, hay 60.840 matrículas de automóviles diferentes que se pueden grabar, teniendo en cuenta las limitaciones dadas. Por ejemplo, una matrícula podría ser "AB12".

Frequently asked questions (FAQs)
What is the derivative of e^(3x) - 4sin(2x) + ln(x)?
+
Math question: Solve for x in the equation log(base 5)(2x^3) = 4.
+
What is the period of the function f(x) = sin(2x) - cos(3x)?
+
New questions in Mathematics
Calculate to represent the function whose graph is a line that passes through the points (1,2) and (−3,4). What is your slope?
A circular park has a diameter of 150ft. A circular fence is to be placed on the edge of this park. Calculate the cost of fencing this park if the rate charged is $7 per foot. Use π = 3.14.
10.Silvana must knit a blanket in 9 days. Knitting 8 hours a day, at the end of the fifth day, only 2/5 of the blanket was done. To be able to finish on time, how many hours will Silvana have to knit per day?
(x^2+3x)/(x^2-9)=
A hotel in the Algarve had to offer 1 week of vacation to one of its employees as an Easter gift in a random choice. It is known that 80 people work in this hotel unit, 41 of whom are Portuguese and 39 are foreign nationals. There are 14 Portuguese men and 23 foreign women. Using what you know about conditional probability, check the probability that the gift was offered to a Portuguese citizen, knowing that it was a woman.
The director of a company must transfer 6 people from the human resources department to the sales department, in order to sustain sales during the month of December. What is the probability that he will transfer only 2 of them?
2.3/-71.32
Let r: x - y 5 = 0. Determine a general equation of the line s parallel to the line r, which forms an isosceles triangle with area 8 with the line x = 5 and the Ox axis.
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
reduce the expression (7.5x 12)÷0.3
Convert 9/13 to a percent
3/9*4/8=
Use linear approximation to estimate the value of the sine of 31o.
The points (-5,-4) and (3,6) are the ends of the diameter of the circle calculate subequation
Give an example of a function defined in R that is continuous in all points, except in the set Z of integers.
Determine the Linear function whose graph passes through the points (6, -2) and has slope 3.
Given the word WEIRD, determine a four-letter offspring that can be formed with the letters of the word written above
a) Statistics scores are normally distributed with the mean of 75 and standard deviation of 7. What is the probability that a student scores between 80 and 88
8/9 divided by 10/6
In a cheese factory, one pie costs 3800 denars. The fixed ones costs are 1,200,000 denars, and variable costs are 2,500 denars per pie. To encounter: a) income functions. profit and costs; b) the break-even point and profit and loss intervals.