Question

Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.

154

likes
770 views

Answer to a math question Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.

Expert avatar
Cristian
4.7
118 Answers
Estamos considerando una matrícula de automóvil que consta de 2 letras y 2 dígitos, con la restricción de que el primer dígito no puede ser cero. Disponemos de 26 letras (AZ) y 10 dígitos (0-9) para elegir. Para determinar el número total de matrículas diferentes que se pueden grabar, debemos considerar las posibilidades para cada posición: Para la primera letra, tenemos 26 opciones (AZ) ya que se puede utilizar cualquier letra. Para la segunda letra, también tenemos 26 opciones ya que se puede utilizar cualquier letra. Para el primer dígito, tenemos 9 opciones (1-9) ya que el cero no está incluido como opción. Para el segundo dígito, tenemos 10 opciones (0-9) ya que se permite cero para el segundo dígito. Para encontrar el número total de matrículas diferentes, multiplicamos el número de opciones para cada posición: Número total de platos = Número de opciones para la primera letra * Número de opciones para la segunda letra * Número de opciones para el primer dígito * Número de opciones para el segundo dígito Número total de platos = 26 * 26 * 9 * 10 Número total de placas = 60.840 Por lo tanto, hay 60.840 matrículas de automóviles diferentes que se pueden grabar, teniendo en cuenta las limitaciones dadas. Por ejemplo, una matrícula podría ser "AB12".

Frequently asked questions (FAQs)
What is the value of sin() when is measured in radians and = 3π/4?
+
What is 85% as a decimal?
+
Question: What is the square root of 1089 multiplied by the cube root of 729?
+
New questions in Mathematics
If we have the sequence: 3, 6, 12, 24 Please determine the 14th term.
For a temperature range between 177 degrees Celsius to 213 degrees Celsius, what is the temperature range in degrees Fahrenheit.
Given that y = ×(2x + 1)*, show that dy = (2x + 1)" (Ax + B) dx where n, A and B are constants to be found.
7273736363-8
An electrical company manufactures batteries that have a duration that is distributed approximately normally, with a mean of 700 hours and a standard deviation of 40 hours. Find the probability that a randomly selected battery has an average life of less than 810 hours.
Director of reservations believes that 9% of the ticketed passengers are no-shows. If the directors right what is the probability that the proportion of no-shows in a sample of 789 ticketed passengers with differ from the population proportion buy more than 3% round your answer to four decimal places.
Suppose 50% of the doctors and hospital are surgeons if a sample of 576 doctors is selected what is the probability that the sample proportion of surgeons will be greater than 55% round your answer to four decimal places
Find the sum of the first 41 terms of the progression that begins: 32, 24, 16, …
Find the derivatives for y=X+1/X-1
Suppose the Golf ball market is perfectly competitive and the functions are known: Q = 120 – 2Px – 2Py 0.2I Q = 2Px 40 Where I = Consumers' income ($200) and Py = Price of Good Y (40) Calculate the equilibrium elasticity: a) 1.6 b) -6 c) 6 d) 0.6
Two business partners have a bank balance of $17,942.00. After the first year their interest brings their balance to $18,928.91. What rate of interest is earned?
P(Z<z)=0.1003
The probability of growing a seedling from a seed is 0.62. How many seeds do I need to plant so that the probability of growing at least one seedling is greater than or equal to 0.87?
We plan to test whether the mean mRNA expression level differs between two strains of yeast, for each of 8,000 genes. We will measure the expression levels of each gene, in n samples of strain 1 and m samples of strain 2. We plan to compute a P-value for each gene, using an unpaired two-sample t-test for each gene (the particular type of test does not matter). a) What are the null hypotheses in these tests (in words)? [2] b) If, in fact, the two strains are identical, how many of these tests do we expect to produce a P-value exceeding 1/4? [2]
You buy a $475,000 house and put 15% down. If you take a 20 year amortization and the rate is 2.34%, what would the monthly payment be?
Let G be the center of gravity of triangle ABC. We draw through A a parallel to BC on which we take a point D so that DG⊥BG. If the area of the quadrilateral AGBD is equal to s, show that AC·BD≥2·s.
Write the inequality in the form of a<x<b. |x| < c^2
22. Let [AB] be a chord in a circle C, and k a circle which is internally tangent to the circle C at a point P and to the chord [AB] at a point Q. Show that the line P Q passes through the midpoint of the arc AB opposite to the arc APB.
2.3 X 0.8
To apply a diagnostic test, in how many ways can 14 students be chosen out of 25? if the order does not matter