Question

Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.

154

likes
770 views

Answer to a math question Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.

Expert avatar
Cristian
4.7
111 Answers
Estamos considerando una matrícula de automóvil que consta de 2 letras y 2 dígitos, con la restricción de que el primer dígito no puede ser cero. Disponemos de 26 letras (AZ) y 10 dígitos (0-9) para elegir. Para determinar el número total de matrículas diferentes que se pueden grabar, debemos considerar las posibilidades para cada posición: Para la primera letra, tenemos 26 opciones (AZ) ya que se puede utilizar cualquier letra. Para la segunda letra, también tenemos 26 opciones ya que se puede utilizar cualquier letra. Para el primer dígito, tenemos 9 opciones (1-9) ya que el cero no está incluido como opción. Para el segundo dígito, tenemos 10 opciones (0-9) ya que se permite cero para el segundo dígito. Para encontrar el número total de matrículas diferentes, multiplicamos el número de opciones para cada posición: Número total de platos = Número de opciones para la primera letra * Número de opciones para la segunda letra * Número de opciones para el primer dígito * Número de opciones para el segundo dígito Número total de platos = 26 * 26 * 9 * 10 Número total de placas = 60.840 Por lo tanto, hay 60.840 matrículas de automóviles diferentes que se pueden grabar, teniendo en cuenta las limitaciones dadas. Por ejemplo, una matrícula podría ser "AB12".

Frequently asked questions (FAQs)
What is the variance of a set of numbers: 7, 12, 15, 21, 24?
+
What is the solution for the inequality 3x - 7 < 20?
+
What are the asymptotes of f(x) = cot x?
+
New questions in Mathematics
A particular employee arrives at work sometime between 8:00 a.m. and 8:50 a.m. Based on past experience the company has determined that the employee is equally likely to arrive at any time between 8:00 a.m. and 8:50 a.m. Find the probability that the employee will arrive between 8:05 a.m. and 8:40 a.m. Round your answer to four decimal places, if necessary.
11(4x-9)= -319
8x-(5-x)
x/20*100
(-5/6)-(-5/4)
Estimate the quotient for 3.24 ÷ 82
X~N(2.6,1.44). find the P(X<3.1)
ind the z-score for which 72% of the distribution's area lies between -z and z. -1.7417, 1.7417 -1.1538, 1.1538 -1.0803, 1.0803 -2.826, 2.826
Your grandfather has run a small high street pharmacy for 40 years. After much persuasion, he has agreed to open a digital store online. List 5 potential ways to improve sales and/or margins by having a digital pharmacy through the utilisation of historic or new sales data.
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) − f(p)| ≤ M|g(x) − g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
48 kg of 30% sulfuric acid in a mixture of 10% and 40% sulfuric acid arose. How many kilograms were each of the original solutions?
nI Exercises 65-68, the latitudes of a pair of cities are given. Assume that one city si directly south of the other and that the earth is a perfect sphere of radius 4000 miles. Use the arc length formula in terms of degrees to find the distance between the two cities. 65. The North Pole: latitude 90° north Springfield, Illinois: latitude 40° north
Determine the kinetic energy of a baseball whose mass is 100 grams and has a speed of 30 m/s.
Kayla started a book club at her school. The number of girls in the book club was one more than twice the number of boys. If there are 15 girls in the book club, how many boys are in the club?
How many digits are there in Hindu-Arabic form of numeral 26 × 1011
8(x+4) -4=4x-1
3(x-4)=156
2p-6=8+5(p+9)
The length of a rectangle is five more than its width. if the perimeter is 120, find both the length and the width.
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.