Question

Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.

154

likes
770 views

Answer to a math question Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.

Expert avatar
Cristian
4.7
119 Answers
Estamos considerando una matrícula de automóvil que consta de 2 letras y 2 dígitos, con la restricción de que el primer dígito no puede ser cero. Disponemos de 26 letras (AZ) y 10 dígitos (0-9) para elegir. Para determinar el número total de matrículas diferentes que se pueden grabar, debemos considerar las posibilidades para cada posición: Para la primera letra, tenemos 26 opciones (AZ) ya que se puede utilizar cualquier letra. Para la segunda letra, también tenemos 26 opciones ya que se puede utilizar cualquier letra. Para el primer dígito, tenemos 9 opciones (1-9) ya que el cero no está incluido como opción. Para el segundo dígito, tenemos 10 opciones (0-9) ya que se permite cero para el segundo dígito. Para encontrar el número total de matrículas diferentes, multiplicamos el número de opciones para cada posición: Número total de platos = Número de opciones para la primera letra * Número de opciones para la segunda letra * Número de opciones para el primer dígito * Número de opciones para el segundo dígito Número total de platos = 26 * 26 * 9 * 10 Número total de placas = 60.840 Por lo tanto, hay 60.840 matrículas de automóviles diferentes que se pueden grabar, teniendo en cuenta las limitaciones dadas. Por ejemplo, una matrícula podría ser "AB12".

Frequently asked questions (FAQs)
What is 30% of 80?
+
Question: Find the derivative of the function f(x) = ∫[0, x^2] (2t + 1) dt.
+
Math question: In a circle, if a diameter is perpendicular to a chord, what is the measure of the angle formed by the chord and the circumference?
+
New questions in Mathematics
Use the digits of 1,9,2,3 to come up with all the numbers 98 and 95
³√12 x ⁶√96
2x-y=5 x-y=4
Suppose that a device has been created that launches objects at ground level and that its operation is modeled by the function h(x) = -4ײ + 256x, with h being the height (in meters) and x being the distance (in meters) What is the maximum height that the object reaches?
Suppose 50% of the doctors and hospital are surgeons if a sample of 576 doctors is selected what is the probability that the sample proportion of surgeons will be greater than 55% round your answer to four decimal places
Answer the following questions regarding the expression below. 0.1 (a) Write the number as a fraction.
In a grocery store, when you take out 3 peppers and 4 carrots, there are 26 peppers and 46 carrots left. How many peppers and carrots were there initially?
A recurring sequence is one where elements repeat after completing one standard. If the sequence AB8C14D96AB8C1... is recurring its twentieth term is equal to: (A) B. (B) 8. (C) A. (D) 6. (E) D.
Engineers want to design seats in commercial aircraft so that they are wide enough to fit ​95% of all males.​ (Accommodating 100% of males would require very wide seats that would be much too​ expensive.) Men have hip breadths that are normally distributed with a mean of 14.4 in. and a standard deviation of 1.2 in. Find P95. That​ is, find the hip breadth for men that separates the smallest ​95% from the largest 5​%.
The simple average of 15 , 30 , 40 , and 45 is
4+168×10³×d1+36×10³×d2=-12 -10+36×10³×d1+72×10³×d2=0
X~N(2.6,1.44). find the P(X<3.1)
Jasminder has made 55% of the recipes in a particular cookbook. If there are 9 recipes that he has never made, how many recipes does the cookbook contain?
For what values of m is point P (m, 1 - 2m) in the 2⁰ quadrant?
find missing measure for triangle area = 48 m square base = 10m heaighy = ? m
How to factorise 5y^2 -7y -52
2 - 6x = -16x + 28
calculate the product of 4 and 1/8
9n + 7(-8 + 4k) use k=2 and n=3
(3.1x10^3g^2)/(4.56x10^2g)