Question

22. Let [AB] be a chord in a circle C, and k a circle which is internally tangent to the circle C at a point P and to the chord [AB] at a point Q. Show that the line P Q passes through the midpoint of the arc AB opposite to the arc APB.

260

likes
1299 views

Answer to a math question 22. Let [AB] be a chord in a circle C, and k a circle which is internally tangent to the circle C at a point P and to the chord [AB] at a point Q. Show that the line P Q passes through the midpoint of the arc AB opposite to the arc APB.

Expert avatar
Dexter
4.7
112 Answers
Pour prouver que la droite PQ passe par le milieu de l’arc AB opposé à l’arc APB, on peut suivre ces étapes : 1. Soit O le centre du cercle C, et M le milieu de l'arc AB opposé à l'arc APB. 2. Puisque le cercle k est intérieurement tangent au cercle C au point P, nous savons que la droite OP est perpendiculaire à PQ. En effet, le rayon du cercle C au point P est perpendiculaire à toute ligne tangente passant par P. 3. Soit N le point d'intersection de la droite PQ et du cercle C. Il faut montrer que N est identique à M, milieu de l'arc AB opposé à l'arc APB. 4. Puisque OP est perpendiculaire à PQ, le triangle OPQ est un triangle rectangle. 5. Considérant le triangle rectangle OPQ, nous savons que l’hypoténuse OQ est un diamètre du cercle C. L’angle OQP est donc un angle droit. 6. Puisque l’angle OQP est un angle droit, et que l’angle OMP est également un angle droit (puisque M est le milieu de l’arc AB), on peut conclure que le quadrilatère OMNQ est un quadrilatère cyclique. 7. Par les propriétés d'un quadrilatère cyclique, les angles opposés de OMNQ sont supplémentaires. L’angle OMN est donc complémentaire à l’angle OQN. 8. Puisque l'angle OMN est supplémentaire à l'angle OQN, et que l'angle OQN est un angle droit, il s'ensuit que l'angle OMN est aussi un angle droit. 9. L'angle OMN étant un angle droit signifie que MN est perpendiculaire à la corde AB. 10. Puisque MN est perpendiculaire à la corde AB et que M est le milieu de l’arc AB opposé à l’arc APB, on peut conclure que la droite PQ passe par le milieu M de l’arc AB opposé à l’arc APB. Nous avons donc montré que la droite PQ passe par le milieu de l’arc AB opposé à l’arc APB.

Frequently asked questions (FAQs)
Math question: What is the limit as x approaches infinity of (5x^3 − 2x^2 + 7) / (3x^3 + 4x − 1)?
+
What is the dot product of vector A with elements (2, -3) and vector B with elements (-1, 4)?
+
Question: Find the angle θ (in degrees) given that sin(θ) = 0.6.
+
New questions in Mathematics
I) Find the directional derivative of 𝑓(𝑥, 𝑦) = 𝑥 sin 𝑦 at (1,0) in the direction of the unit vector that make an angle of 𝜋/4 with positive 𝑥-axis.
If f(x) = 3x 2, what is the value of x so that f(x) = 11?
7273736363-8
Determine the momentum of a 20 kg body traveling at 20 m/s.
Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?
2x+4x=
reduce the expression (7.5x 12)÷0.3
The ninth term of a given geometric progression, with reason q , is 1792, and its fourth term is 56. Thus, calculate the fourth term of another geometric progression, whose ratio is q +1 and whose first term is equal to the first term of the first P.G. described.
89, ÷ 10
3.24 ÷ 82
Let v be the set of all ordered pairs of real numbers and consider the scalar addition and multiplication operations defined by: u+v=(x,y)+(s,t)=(x+s+1,y+t -two) au=a.(x,y)=(ax+a-1,ay-2a+2) It is known that this set with the operations defined above is a vector space. A) calculate u+v is au for u=(-2,3),v=(1,-2) and a=2 B) show that (0,0) #0 Suggestion find a vector W such that u+w=u C) who is the vector -u D) show that axiom A4 holds:-u+u=0
2x2
Determine the Linear function whose graph passes through the points (6, -2) and has slope 3.
Kaya deposits 25,000 into an account that earns 3% interest compounded monthly. How much does Kaya have in the account after 6 years 8 months? Round to the nearest cent. 32,912.50 30,000 29,923.71 30,527.45
In poker, a full house consists of five cards, where two of the cards have the same number (or letter) and the remaining three also have the same number (or letter) as each other (but not as the previous two cards). Use a search engine or Wikipedia to understand the concept better if necessary. In how many different ways can one obtain a full house?
-5x=115
2x-4=8
How much does 7.2 moles of ammonium dichromate weigh? (NH4)2Cr2O7
Paul invites 12 friends to his birthday. He wants to give 15 candies to everyone two. The candies are sold in packs of 25. How many should he buy? packages?
To apply a diagnostic test, in how many ways can 14 students be chosen out of 25? if the order does not matter