Question

22. Let [AB] be a chord in a circle C, and k a circle which is internally tangent to the circle C at a point P and to the chord [AB] at a point Q. Show that the line P Q passes through the midpoint of the arc AB opposite to the arc APB.

260

likes
1299 views

Answer to a math question 22. Let [AB] be a chord in a circle C, and k a circle which is internally tangent to the circle C at a point P and to the chord [AB] at a point Q. Show that the line P Q passes through the midpoint of the arc AB opposite to the arc APB.

Expert avatar
Dexter
4.7
113 Answers
Pour prouver que la droite PQ passe par le milieu de l’arc AB opposé à l’arc APB, on peut suivre ces étapes : 1. Soit O le centre du cercle C, et M le milieu de l'arc AB opposé à l'arc APB. 2. Puisque le cercle k est intérieurement tangent au cercle C au point P, nous savons que la droite OP est perpendiculaire à PQ. En effet, le rayon du cercle C au point P est perpendiculaire à toute ligne tangente passant par P. 3. Soit N le point d'intersection de la droite PQ et du cercle C. Il faut montrer que N est identique à M, milieu de l'arc AB opposé à l'arc APB. 4. Puisque OP est perpendiculaire à PQ, le triangle OPQ est un triangle rectangle. 5. Considérant le triangle rectangle OPQ, nous savons que l’hypoténuse OQ est un diamètre du cercle C. L’angle OQP est donc un angle droit. 6. Puisque l’angle OQP est un angle droit, et que l’angle OMP est également un angle droit (puisque M est le milieu de l’arc AB), on peut conclure que le quadrilatère OMNQ est un quadrilatère cyclique. 7. Par les propriétés d'un quadrilatère cyclique, les angles opposés de OMNQ sont supplémentaires. L’angle OMN est donc complémentaire à l’angle OQN. 8. Puisque l'angle OMN est supplémentaire à l'angle OQN, et que l'angle OQN est un angle droit, il s'ensuit que l'angle OMN est aussi un angle droit. 9. L'angle OMN étant un angle droit signifie que MN est perpendiculaire à la corde AB. 10. Puisque MN est perpendiculaire à la corde AB et que M est le milieu de l’arc AB opposé à l’arc APB, on peut conclure que la droite PQ passe par le milieu M de l’arc AB opposé à l’arc APB. Nous avons donc montré que la droite PQ passe par le milieu de l’arc AB opposé à l’arc APB.

Frequently asked questions (FAQs)
What is the speed of a car that traveled 100 miles in 2 hours?
+
What is the equation of a circle in standard form with a radius of 5 units?
+
What is the probability of rolling a sum of 9 with two dice (6-sided) without using one specific number?
+
New questions in Mathematics
8x²-30x-10x²+70x=-30x+10x²-20x²
What payment 7 months from now would be equivalent in value to a $3,300 payment due 23 months from now? The value of money is 2.7% simple interest. Round your answer to 2 decimal places. Show all work and how you arrive at the answer..
If L (-2, -5) reflected across y = -4. What are the coordinates of L?
How many different ways can a psychology student select 5 subjects from a pool of 20 subjects and assign each one to a different experiment?
The durability of a tire of a certain brand is a Normal random variable with an average of 64,000 km and a standard deviation of 9,000 km. Assuming independence between tires, what is the probability that the 4 tires on a car will last more than 58,000 km?
The thermal representation f(x) = 20 times 0.8 to the power of x is known from an exponential function f. Specify the intersection point with the y-axis
reduce the expression (7.5x 12)÷0.3
User Before the election, a poll of 60 voters found the proportion who support the Green candidate to be 25%. Calculate the 90% confidence interval for the population parameter. (Give your answers as a PERCENTAGE rounded to TWO DECIMAL PLACES: exclude any trailing zeros and DO NOT INSERT THE % SIGN) Give the lower limit of the 90% confidence interval Give the upper limit of the 90% confidence interval
Shows two blocks, masses 4.3 kg and 5.4 kg, being pushed across a frictionless surface by a 22.5-N horizontal force applied to the 4.3-kg block. A. What is the acceleration of the blocks? B. What is the force of the 4.3-kg block on the 5.4 -kg block? C. What is the force of the 5.4 -kg block on the 4.3 -kg block?
7=-4/3y -1
The simple average of 15 , 30 , 40 , and 45 is
cube root of 56
A hardware bill totals $857.63 with discounts of 5% and 3%. What is the net cost of the Material ?
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) − f(p)| ≤ M|g(x) − g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
How to convert 45 kg into grams
How to factorise 5y^2 -7y -52
Find the set of points formed by the expression 𝜋<|𝑧−4+2𝑖|<3𝜋.
2+2020202
-Please answer to the following questions: What is the price elasticity of demand? Can you explain it in your own words? What is the price elasticity of supply? Can you explain it in your own words? What is the relationship between price elasticity and position on the demand curve? For example, as you move up the demand curve to higher prices and lower quantities, what happens to the measured elasticity? How would you explain that? B-Assume that the supply of low-skilled workers is fairly elastic, but the employers’ demand for such workers is fairly inelastic. If the policy goal is to expand employment for low-skilled workers, is it better to focus on policy tools to shift the supply of unskilled labor or on tools to shift the demand for unskilled labor? What if the policy goal is to raise wages for this group? Explain your answers with supply and demand diagrams. Make sure to properly cite and reference your academic or peer-reviewed sources (minimum 2).
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.