Question

Let {Xn }n≥0 be a Markov chain with state space E = {0, 1, . . .} and transition probabilities given by: p0,0= 1−p0,1=(3/4) pi,i+1 =(1/2)( 1−(1/(i+2))) ∀i≥0 pi,i−1 = (1/2)( 1+(1/(i+2))) ∀i≥1 Determine whether the chain is transient, null recursive, or positive recursive. In the latter case, find the stationary distribution.

92

likes
459 views

Answer to a math question Let {Xn }n≥0 be a Markov chain with state space E = {0, 1, . . .} and transition probabilities given by: p0,0= 1−p0,1=(3/4) pi,i+1 =(1/2)( 1−(1/(i+2))) ∀i≥0 pi,i−1 = (1/2)( 1+(1/(i+2))) ∀i≥1 Determine whether the chain is transient, null recursive, or positive recursive. In the latter case, find the stationary distribution.

Expert avatar
Ali
4.4
92 Answers
To determine if the Markov chain is transient, null recurrent, or positive recurrent, we need to examine the recurrence properties of the chain.

Let's first calculate the probability of return to state 0, denoted as f_{0} :
For the chain to return to state 0, it must transition from state 0 to state 1, then return from state 1 to state 0.
Thus,
f_{0} = p_{0,1} \times p_{1,0} = \left(\frac{3}{4}\right) \times \left(\frac{1}{2}\right) = \frac{3}{8}

Now, let's calculate the probability of return to state 0 after 2 steps, denoted as f_{0}^{(2)} :
For the chain to return to state 0 after 2 steps, it must transition from state 0 to state 1, then transition from state 1 to some state i, and finally transition from state i back to state 0.
Thus,
f_{0}^{(2)} = p_{0,1} \times \sum_{i=1}^{\infty} p_{1,i}p_{i,0} = \left(\frac{3}{4}\right) \times \sum_{i=1}^{\infty} \left(\frac{1}{2}\right)\left(1 - \frac{1}{i+2}\right)\left(\frac{1}{2}\right)\left(1 + \frac{1}{i+2}\right)

Now, observe that \sum_{i=1}^{\infty} \left(1 - \frac{1}{i+2}\right)\left(1 + \frac{1}{i+2}\right) telescopes to 1. Thus,
f_{0}^{(2)} = \frac{3}{4} \times 1 = \frac{3}{4}

As f_{0}^{(2)} is greater than f_{0} , we can conclude that the Markov chain is positive recurrent.

To find the stationary distribution, we solve the balance equations given by \pi = \pi P where \pi is the stationary distribution vector and P is the transition probability matrix.

Writing the balance equations for this Markov chain, we get:
\pi_0 = \pi_0 p_{0,0} + \pi_1 p_{1,0}
\pi_i = \pi_{i-1} p_{i-1,i} + \pi_i p_{i,i} + \pi_{i+1} p_{i+1,i} \text{ for } i \geq 1

For i = 0 , we get:
\pi_0 = \pi_0 p_{0,0} + \pi_1 p_{1,0}
\pi_0 = \pi_0 \left(1 - \frac{3}{4}\right) + \pi_1 \frac{1}{2}
\frac{1}{4} \pi_0 = \frac{1}{2} \pi_1
\pi_1 = \frac{1}{2} \pi_0

For i \geq 1 , we get:
\pi_i = \pi_{i-1} p_{i-1,i} + \pi_i p_{i,i} + \pi_{i+1} p_{i+1,i}
\pi_i = \pi_{i-1} \left(\frac{1}{2}\right) \left(1 + \frac{1}{i+1}\right) + \pi_i \left(\frac{1}{2}\right) \left(1 - \frac{1}{i+1}\right) + \pi_{i+1} \left(\frac{1}{2}\right) \left(1 - \frac{1}{i+2}\right)

Solving the above equations recursively, we get:
\pi_{i+1} = \frac{i+2}{i+1} \pi_i

Using this, we can express \pi_i in terms of \pi_0 as:
\pi_i = \frac{2}{3}\left(\frac{3}{4}\right)^i \pi_0

To find \pi_0 , we use the fact that the sum of all probabilities in the stationary distribution is 1:
\sum_{i=0}^{\infty} \pi_i = 1
\pi_0 \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = 1
\pi_0 \left(1 + \frac{1}{4} + \left(\frac{3}{4}\right)^2 + \ldots \right) = 1
\pi_0 \left(\frac{1}{1 - 3/4}\right) = \pi_0 \times 4 = 1
\pi_0 = \frac{1}{4}

Therefore, the stationary distribution is:
\pi_i = \frac{2}{3}\left(\frac{3}{4}\right)^i \times \frac{1}{4} = \frac{2}{3} \times \left(\frac{3}{4}\right)^{i+1}

\boxed{\pi_i = \frac{2}{3} \left(\frac{3}{4}\right)^{i+1}}

Frequently asked questions (FAQs)
What is the value of \(5^3 - \sqrt{49} + 2^{4}\)?
+
What is the equation of a hyperbola with a center at (2, -3), a horizontal axis, and a focus at (8, -3)?
+
What is the median of a set of numbers: {2, 4, 6, 8, 10}?
+
New questions in Mathematics
A=m/2-t isolate t
Find the measures of the sides of ∆KPL and classify each triangle by its sides k (-2,-6), p (-4,0), l (3,-1)
4X^2 25
4x-3y=5;x+2y=4
If f(x,y)=6xy^2+3y^3 find (∫3,-2) f(x,y)dx.
The equation of the straight line that passes through the coordinate point (2,5) and is parallel to the straight line with equation x 2y 9 = 0 is
find x in the equation 2x-4=6
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
determine the polynomial F of degree 2 that interpolates. f at points (0;1) (2;5) (4;6). calculate F(0.8). Note: Using the polynomial expression with difference operator.
show step by step simplification: (¬𝑑∨((¬b∧c)∨(b∧¬c)))∧((𝑎 ∧ 𝑏) ∨ (¬𝑎 ∧ ¬𝑏))∧(¬𝑐∨((¬𝑑∧𝑎)∨(𝑑∧¬𝑎)))
Solve the following equation for x in exact form and then find the value to the nearest hundredths (make sure to show your work): 5e3x – 3 = 25
The function h(t)=-5t^2+20t+60 models the height in meters of a ball t seconds after it’s thrown . Which describe the intercepts and vertex of this function
Determine the increase of the function y=4x−5 when the argument changes from x1=2 to x2=3
If the regression equation is given by 4x –y + 5 = 0, then the slope of regression line of y on x is
A popular cell phone family plan provides 1500 minutes. It charges 89.99/month for the first 2 lines and 9.99 for every line after that. Unlimited text messages for all phone lines costs $30.00/month, and Internet costs $10.00/month per phone line. If a family with a $200 monthly budget buys this plan and signs up for unlimited text messaging and Internet on each phone line, how many cell phone lines can they afford? Use an inequality to solve this problem. Graph your solution on the number line and explain the meaning of your graph in a sentence.
Find the zero of the linear function 8x + 24 = 0
The mean of 4 numbers is 5 and the mean of 3 different numbers is 12. What is the mean of the 7 numbers together? Produce an algebraic solution. Guess and check is acceptable.
A rectangular swimming pool has a length of 14 feet, a width of 26 feet and a depth of 5 feet. Round answers to the nearest hundredth as needed. (a) How many cubic feet of water can the pool hold? cubic feet (b) The manufacturer suggests filling the pool to 95% capacity. How many cubic feet of water is this? cubic feet
97,210 ➗ 82 division
Find the number of liters of water needed to reduce 9 liters of lotion. shave containing 50% alcohol to a lotion containing 30% alcohol.