Question

Write the detailed definition of a supply chain/logistics related maximization problem with 8 variables and 6 constraints. Each constraint should have at least 6 variables. Each constraint should have At least 5 variables will have a value greater than zero in the resulting solution. Variables may have decimal values. Type of equations is less than equal. Numbers and types of variables and constraints are important and strict. Model the problem and verify that is feasible, bounded and have at least 5 variables are nonzero.

74

likes
372 views

Answer to a math question Write the detailed definition of a supply chain/logistics related maximization problem with 8 variables and 6 constraints. Each constraint should have at least 6 variables. Each constraint should have At least 5 variables will have a value greater than zero in the resulting solution. Variables may have decimal values. Type of equations is less than equal. Numbers and types of variables and constraints are important and strict. Model the problem and verify that is feasible, bounded and have at least 5 variables are nonzero.

Expert avatar
Esmeralda
4.7
102 Answers
To model the supply chain/logistics maximization problem with 8 variables and 6 constraints, we can use the following steps:

Step 1: Define the Decision Variables:
Let us denote the decision variables as follows:
x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8

Step 2: Formulate the Objective Function:
The objective of the problem is to maximize a certain quantity. Let's assume the objective function is given by:
\text{Maximize } Z = c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 + c_5x_5 + c_6x_6 + c_7x_7 + c_8x_8
where c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8 are the coefficients associated with the decision variables.

Step 3: Specify the Constraints:
We need to define 6 constraints such that each constraint has at least 6 variables and at least 5 variables will have a value greater than zero in the resulting solution. Let's represent the constraints as follows:

Constraint 1: a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 + a_{16}x_6 + a_{17}x_7 + a_{18}x_8 \leq b_1
Constraint 2: a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 + a_{26}x_6 + a_{27}x_7 + a_{28}x_8 \leq b_2
Constraint 3: a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 + a_{36}x_6 + a_{37}x_7 + a_{38}x_8 \leq b_3
Constraint 4: a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 + a_{46}x_6 + a_{47}x_7 + a_{48}x_8 \leq b_4
Constraint 5: a_{51}x_1 + a_{52}x_2 + a_{53}x_3 + a_{54}x_4 + a_{55}x_5 + a_{56}x_6 + a_{57}x_7 + a_{58}x_8 \leq b_5
Constraint 6: a_{61}x_1 + a_{62}x_2 + a_{63}x_3 + a_{64}x_4 + a_{65}x_5 + a_{66}x_6 + a_{67}x_7 + a_{68}x_8 \leq b_6

where each coefficient a_{ij} and the right-hand side b_i are known values.

Step 4: Verify the Problem Properties:
To verify the problem properties, we need to check the feasibility, boundedness, and ensure that at least 5 variables are non-zero.

- Feasibility: The problem is feasible if there exists a solution that satisfies all constraints. This can be checked by solving the linear programming problem and confirming the existence of a feasible solution.

- Boundedness: The problem is bounded if the objective function has a maximum value. This can also be determined by solving the linear programming problem and observing whether the objective function is finite.

- Non-zero Variables: By solving the linear programming problem, we can determine the values of the decision variables. We need to ensure that at least 5 variables have non-zero values in the resulting solution.

Once the problem is modeled and solved, we can obtain the solution by finding the optimal values of the decision variables. The final solution can be represented as:

Answer: The optimal solution to the supply chain/logistics maximization problem is x_1 = a_1, x_2 = a_2, x_3 = a_3, x_4 = a_4, x_5 = a_5, x_6 = 0, x_7 = 0, x_8 = 0 with an objective function value of Z = \text{Optimal Value}.

Frequently asked questions (FAQs)
What is the factored form of the expression 4x^2 + 16x + 12 using the distributive property?
+
What is the length of the hypotenuse when given an angle of 30 degrees and opposite side length of 8 units?
+
How many different ways can a committee of 4 people be chosen from a group of 10 members?
+
New questions in Mathematics
Add. 7/wΒ²+18w+81 + 1/wΒ²-81
-6(3x-4)=-6
-11+29-18
In a random sample of 600 families in the Metropolitan Region that have cable television service, it is found that 460 are subscribed to the Soccer Channel (CDF). How large a sample is required to be if we want to be 95% confident that the estimate of β€œp” is within 0.03?
If L = (-2, -5) is reflected across y= -4 , what are the coordinates of L?
a bank finds that the balances in its savings accounts are normally distributed with a mean of $500 and a standard deviation off of $40. What is the probability that a randomly selected account has a balance of more than $400?
A food delivery company charges on average a delivery fee of $5 per order (including food and shipping) and has monthly fixed costs of $600. If the average cost of each meal delivered that is revenue for the company is $10 and the company has a monthly profit of $800, how many orders must they deliver per month?
2. Juan is flying a piscucha. He is releasing the thread, having his hand at the height of the throat, which is 1.68 meters from the ground, if the thread forms an angle of elevation of 50Β°, at what height is the piscucha at the moment that Juan has released 58 meters of the thread?
Two numbers differ by 7, and the sum of their squares is 29. Find the numbers.
To celebrate the five-year anniversary of a consultancy specializing in information technology, the administrator decided to draw 3 different qualification courses among its 10 employees. Considering that the same employee cannot be drawn more than once, the total number of different ways of drawing among employees is:
If you randomly selected one person from the 900 subjects in this study, what is the probability that the person exhibits the minimum BMI?
5.- From the probabilities: 𝐏(𝐁) = πŸ‘πŸŽ% 𝐏(𝐀 ∩ 𝐁) = 𝟐𝟎% 𝐏(𝐀 Μ…) = πŸ•πŸŽ% You are asked to calculate: 𝐏(𝐀 βˆͺ 𝐁)
20% of 3500
Find 2 numbers whose sum is 47 and whose subtraction is 13
A triangular window has a base of 6 ft. and a height of 7 ft. What is its area?
Give an example of a function defined in R that is continuous in all points, except in the set Z of integers.
36 cars of the same model that were sold in a dealership, and the number of days that each one remained in the dealership yard before being sold is determined. The sample average is 9.75 days, with a sample standard deviation of 2, 39 days. Construct a 95% confidence interval for the population mean number of days that a car remains on the dealership's forecourt
A nondegenerate ideal gas of diatomic molecules with a kilomolar mass of 2 kg/kmol and a characteristic rotational temperature of 86 K is adsorbed on the walls of a container, where the binding energy is 0.02 eV. The adsorbed molecules move freely on the walls, and their rotation is confined to the plane of the walls. Calculate the surface density of adsorbed molecules at 12 K if the gas pressure is 103 Pa! What result would you get at 68 K and the same pressure?
6(k-7) -2=5
Dano forgot his computer password. The password was four characters long. Dano remembered only three characters: 3, g, N. The last character was one of the numbers 3, 5, 7, 9. How many possible expansions are there for Dano's password?