Question

Write the detailed definition of a supply chain/logistics related maximization problem with 8 variables and 6 constraints. Each constraint should have at least 6 variables. Each constraint should have At least 5 variables will have a value greater than zero in the resulting solution. Variables may have decimal values. Type of equations is less than equal. Numbers and types of variables and constraints are important and strict. Model the problem and verify that is feasible, bounded and have at least 5 variables are nonzero.

74

likes
372 views

Answer to a math question Write the detailed definition of a supply chain/logistics related maximization problem with 8 variables and 6 constraints. Each constraint should have at least 6 variables. Each constraint should have At least 5 variables will have a value greater than zero in the resulting solution. Variables may have decimal values. Type of equations is less than equal. Numbers and types of variables and constraints are important and strict. Model the problem and verify that is feasible, bounded and have at least 5 variables are nonzero.

Expert avatar
Esmeralda
4.7
102 Answers
To model the supply chain/logistics maximization problem with 8 variables and 6 constraints, we can use the following steps:

Step 1: Define the Decision Variables:
Let us denote the decision variables as follows:
x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8

Step 2: Formulate the Objective Function:
The objective of the problem is to maximize a certain quantity. Let's assume the objective function is given by:
\text{Maximize } Z = c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 + c_5x_5 + c_6x_6 + c_7x_7 + c_8x_8
where c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8 are the coefficients associated with the decision variables.

Step 3: Specify the Constraints:
We need to define 6 constraints such that each constraint has at least 6 variables and at least 5 variables will have a value greater than zero in the resulting solution. Let's represent the constraints as follows:

Constraint 1: a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 + a_{16}x_6 + a_{17}x_7 + a_{18}x_8 \leq b_1
Constraint 2: a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 + a_{26}x_6 + a_{27}x_7 + a_{28}x_8 \leq b_2
Constraint 3: a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 + a_{36}x_6 + a_{37}x_7 + a_{38}x_8 \leq b_3
Constraint 4: a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 + a_{46}x_6 + a_{47}x_7 + a_{48}x_8 \leq b_4
Constraint 5: a_{51}x_1 + a_{52}x_2 + a_{53}x_3 + a_{54}x_4 + a_{55}x_5 + a_{56}x_6 + a_{57}x_7 + a_{58}x_8 \leq b_5
Constraint 6: a_{61}x_1 + a_{62}x_2 + a_{63}x_3 + a_{64}x_4 + a_{65}x_5 + a_{66}x_6 + a_{67}x_7 + a_{68}x_8 \leq b_6

where each coefficient a_{ij} and the right-hand side b_i are known values.

Step 4: Verify the Problem Properties:
To verify the problem properties, we need to check the feasibility, boundedness, and ensure that at least 5 variables are non-zero.

- Feasibility: The problem is feasible if there exists a solution that satisfies all constraints. This can be checked by solving the linear programming problem and confirming the existence of a feasible solution.

- Boundedness: The problem is bounded if the objective function has a maximum value. This can also be determined by solving the linear programming problem and observing whether the objective function is finite.

- Non-zero Variables: By solving the linear programming problem, we can determine the values of the decision variables. We need to ensure that at least 5 variables have non-zero values in the resulting solution.

Once the problem is modeled and solved, we can obtain the solution by finding the optimal values of the decision variables. The final solution can be represented as:

Answer: The optimal solution to the supply chain/logistics maximization problem is x_1 = a_1, x_2 = a_2, x_3 = a_3, x_4 = a_4, x_5 = a_5, x_6 = 0, x_7 = 0, x_8 = 0 with an objective function value of Z = \text{Optimal Value}.

Frequently asked questions (FAQs)
Math question: Solve the equation x^3 - 6x^2 + 11x - 6 = 0.
+
What is the reciprocal of the sum of the rational functions f(x) = 1/(2x) + 1/(3x) - 1/(4x)?
+
What is the probability of rolling a fair 6-sided die and getting a 2?
+
New questions in Mathematics
The strength of Kefexin oral suspension is 100 mg/ml. Nora has been prescribed cefalexin at a dose of 50 mg/kg/day divided in two single doses. Nora weighs 14 kg. How many milliliters of solution for Nora should be given as a single dose?
2+2
3(4x-1)-2(x+3)=7(x-1)+2
The ratio of tomatoes to red apples is 2:5. If there are 20 tomaoes in the garden, how many red apples are there?
The mean life of a television set is 119 months with a standard deviation of 13 months. If a sample of 67 televisions is randomly selected, what is the probability that the sample mean would be less than 121 months? Round your answer to four decimal places
how many arrangement can be made of 4 letters chosen from the 8 letters of the world ABBSOLUTE
If f(x,y)=6xy^2+3y^3 find (∫3,-2) f(x,y)dx.
A test has 5 multiple choice questions. Each question has 4 alternatives, only one of which is correct. A student who did not study for the test randomly chooses one alternative for each question.(a) What is the probability of him getting a zero on the test?(b) What is the probability of him getting a three or more? The maximum mark for the test is 5, with each question worth one point.
Let r: x - y 5 = 0. Determine a general equation of the line s parallel to the line r, which forms an isosceles triangle with area 8 with the line x = 5 and the Ox axis.
The average number of babies born at a hospital is 6 per hour. What is the probability that three babies are born during a particular 1 hour period?
calculate the area in square units of A rectangle with length 6cm and breadth 5cm
sin 30
The sum of two numbers is 144. Double the first number minus thrice the second number is equal to 63. Determine the first two numbers.
Given (3x+2)E [2;14] how much money (in soles) does Sophia have if numerically it is the greatest value of x?
P(Z<z)=0.1003
Three machines called A, B and C, produce 43%, 26% and 31% of the total production of a company, respectively. Furthermore, it has been detected that 8%, 2% and 1.6% of the product manufactured by these machines is defective. a) What is the probability that a product is not defective? b) A product is selected at random and found to be defective, what is the probability that it was manufactured on machine B?
Give an example of a function defined in R that is continuous in all points, except in the set Z of integers.
48 kg of 30% sulfuric acid in a mixture of 10% and 40% sulfuric acid arose. How many kilograms were each of the original solutions?
A buyer purchased a North Carolina home for $475,250. The seller allowed the buyer to assume his first small mortgage with a loan balance of $110,000. How much is the excise tax paid in the transaction? $951 $729.50 $950.50 $221 none of the above
Read the “Local Communities as Stakeholders: Does Amazon Really Need Tax Breaks?” example on p. 83 in Ch. 3 of Management: A Practical Introduction. In your response, discuss whether you feel that tax breaks for big companies benefit local communities. Describe ways to attract business to a region without having a negative impact on the larger community.