Question

Write the detailed definition of a supply chain/logistics related maximization problem with 8 variables and 6 constraints. Each constraint should have at least 6 variables. Each constraint should have At least 5 variables will have a value greater than zero in the resulting solution. Variables may have decimal values. Type of equations is less than equal. Numbers and types of variables and constraints are important and strict. Model the problem and verify that is feasible, bounded and have at least 5 variables are nonzero.

74

likes
372 views

Answer to a math question Write the detailed definition of a supply chain/logistics related maximization problem with 8 variables and 6 constraints. Each constraint should have at least 6 variables. Each constraint should have At least 5 variables will have a value greater than zero in the resulting solution. Variables may have decimal values. Type of equations is less than equal. Numbers and types of variables and constraints are important and strict. Model the problem and verify that is feasible, bounded and have at least 5 variables are nonzero.

Expert avatar
Esmeralda
4.7
102 Answers
To model the supply chain/logistics maximization problem with 8 variables and 6 constraints, we can use the following steps:

Step 1: Define the Decision Variables:
Let us denote the decision variables as follows:
x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8

Step 2: Formulate the Objective Function:
The objective of the problem is to maximize a certain quantity. Let's assume the objective function is given by:
\text{Maximize } Z = c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 + c_5x_5 + c_6x_6 + c_7x_7 + c_8x_8
where c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8 are the coefficients associated with the decision variables.

Step 3: Specify the Constraints:
We need to define 6 constraints such that each constraint has at least 6 variables and at least 5 variables will have a value greater than zero in the resulting solution. Let's represent the constraints as follows:

Constraint 1: a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 + a_{16}x_6 + a_{17}x_7 + a_{18}x_8 \leq b_1
Constraint 2: a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 + a_{26}x_6 + a_{27}x_7 + a_{28}x_8 \leq b_2
Constraint 3: a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 + a_{36}x_6 + a_{37}x_7 + a_{38}x_8 \leq b_3
Constraint 4: a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 + a_{46}x_6 + a_{47}x_7 + a_{48}x_8 \leq b_4
Constraint 5: a_{51}x_1 + a_{52}x_2 + a_{53}x_3 + a_{54}x_4 + a_{55}x_5 + a_{56}x_6 + a_{57}x_7 + a_{58}x_8 \leq b_5
Constraint 6: a_{61}x_1 + a_{62}x_2 + a_{63}x_3 + a_{64}x_4 + a_{65}x_5 + a_{66}x_6 + a_{67}x_7 + a_{68}x_8 \leq b_6

where each coefficient a_{ij} and the right-hand side b_i are known values.

Step 4: Verify the Problem Properties:
To verify the problem properties, we need to check the feasibility, boundedness, and ensure that at least 5 variables are non-zero.

- Feasibility: The problem is feasible if there exists a solution that satisfies all constraints. This can be checked by solving the linear programming problem and confirming the existence of a feasible solution.

- Boundedness: The problem is bounded if the objective function has a maximum value. This can also be determined by solving the linear programming problem and observing whether the objective function is finite.

- Non-zero Variables: By solving the linear programming problem, we can determine the values of the decision variables. We need to ensure that at least 5 variables have non-zero values in the resulting solution.

Once the problem is modeled and solved, we can obtain the solution by finding the optimal values of the decision variables. The final solution can be represented as:

Answer: The optimal solution to the supply chain/logistics maximization problem is x_1 = a_1, x_2 = a_2, x_3 = a_3, x_4 = a_4, x_5 = a_5, x_6 = 0, x_7 = 0, x_8 = 0 with an objective function value of Z = \text{Optimal Value}.

Frequently asked questions (FAQs)
Find the equation of an ellipse with a major axis length of 8 and a minor axis length of 6.
+
What is the derivative of f(x) = cos(3x) / (1 + sin(2x)) ?
+
Question: What is the vertex form equation of a quadratic function with a vertex at (3, -2), which opens upward, and passes through the point (5, 4)?
+
New questions in Mathematics
Let the vectors be u=(-1,0,2) , v=(0,2,-3) , w=(2,2,3) Calculate the following expressions a)<u,w> b) &lt;2u- 5v,3w&gt;
A person who weighs 200 pounds on earth would weigh about 32 pounds on the moon. Find the weight of a person on earth who would weigh 15 pounds on the moon.
A hotel in the Algarve had to offer 1 week of vacation to one of its employees as an Easter gift in a random choice. It is known that 80 people work in this hotel, 41 of whom are Portuguese and 39 are foreign nationals. There are 14 Portuguese men and 23 foreign women. Using what you know about conditional probability, check the probability that the gift was offered to a Portuguese citizen, knowing that it was a woman.
Imagine that you are in an electronics store and you want to calculate the final price of a product after applying a discount. The product you are interested in has an original price of $1000 MN, but, for today, the store offers a 25% discount on all its products. Develop an algorithm that allows you to calculate the final price you will pay, but first point out the elements.
Kayla has $8,836.00 in her savings account. The bank gives Kayla 5%of the amount of money in account as a customer bonus. What amount of money does the bank give Kayla? Justify your answer on a 6th grade level.
58+861-87
is the x element (180,270), if tanx-3cotx=2, sinx ?
If you randomly selected one person from the 900 subjects in this study, what is the probability that the person exhibits the minimum BMI?
A merchant can sell 20 electric shavers a day at a price of 25 each, but he can sell 30 if he sets a price of 20 for each electric shaver. Determine the demand equation, assuming it is linear. Consider (P= price, X= quantity demanded)
Substitute a=2 and b=-3 and c=-4 to evaluate 2ac/(-2b^2-a)
Log5 625
7=-4/3y -1
P(Z<z)=0.1003
The two sides of the triangle are 12 cm and 5 cm, and the angle between the sides is 60Β°. Cover the area of ​​the triangle!
If the regression equation is given by 4x –y + 5 = 0, then the slope of regression line of y on x is
For what values of m is point P (m, 1 - 2m) in the 2⁰ quadrant?
The mass of 120 molecules of X2C4 is 9127.2 amu. Identify the unknown atom, X, by finding the atomic mass. The atomic mass of C is 12.01 amu/atom
2.3 X 0.8
the length of the fenced in area is to be 5 ft greater than the width and the total amount of fencing to be used is 89 ft find the width and length
(3.1x10^3g^2)/(4.56x10^2g)