Question

Write the detailed definition of a supply chain/logistics related maximization problem with 8 variables and 6 constraints. Each constraint should have at least 6 variables. Each constraint should have At least 5 variables will have a value greater than zero in the resulting solution. Variables may have decimal values. Type of equations is less than equal. Numbers and types of variables and constraints are important and strict. Model the problem and verify that is feasible, bounded and have at least 5 variables are nonzero.

74

likes
372 views

Answer to a math question Write the detailed definition of a supply chain/logistics related maximization problem with 8 variables and 6 constraints. Each constraint should have at least 6 variables. Each constraint should have At least 5 variables will have a value greater than zero in the resulting solution. Variables may have decimal values. Type of equations is less than equal. Numbers and types of variables and constraints are important and strict. Model the problem and verify that is feasible, bounded and have at least 5 variables are nonzero.

Expert avatar
Esmeralda
4.7
102 Answers
To model the supply chain/logistics maximization problem with 8 variables and 6 constraints, we can use the following steps:

Step 1: Define the Decision Variables:
Let us denote the decision variables as follows:
x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8

Step 2: Formulate the Objective Function:
The objective of the problem is to maximize a certain quantity. Let's assume the objective function is given by:
\text{Maximize } Z = c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 + c_5x_5 + c_6x_6 + c_7x_7 + c_8x_8
where c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8 are the coefficients associated with the decision variables.

Step 3: Specify the Constraints:
We need to define 6 constraints such that each constraint has at least 6 variables and at least 5 variables will have a value greater than zero in the resulting solution. Let's represent the constraints as follows:

Constraint 1: a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 + a_{16}x_6 + a_{17}x_7 + a_{18}x_8 \leq b_1
Constraint 2: a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 + a_{26}x_6 + a_{27}x_7 + a_{28}x_8 \leq b_2
Constraint 3: a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 + a_{36}x_6 + a_{37}x_7 + a_{38}x_8 \leq b_3
Constraint 4: a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 + a_{46}x_6 + a_{47}x_7 + a_{48}x_8 \leq b_4
Constraint 5: a_{51}x_1 + a_{52}x_2 + a_{53}x_3 + a_{54}x_4 + a_{55}x_5 + a_{56}x_6 + a_{57}x_7 + a_{58}x_8 \leq b_5
Constraint 6: a_{61}x_1 + a_{62}x_2 + a_{63}x_3 + a_{64}x_4 + a_{65}x_5 + a_{66}x_6 + a_{67}x_7 + a_{68}x_8 \leq b_6

where each coefficient a_{ij} and the right-hand side b_i are known values.

Step 4: Verify the Problem Properties:
To verify the problem properties, we need to check the feasibility, boundedness, and ensure that at least 5 variables are non-zero.

- Feasibility: The problem is feasible if there exists a solution that satisfies all constraints. This can be checked by solving the linear programming problem and confirming the existence of a feasible solution.

- Boundedness: The problem is bounded if the objective function has a maximum value. This can also be determined by solving the linear programming problem and observing whether the objective function is finite.

- Non-zero Variables: By solving the linear programming problem, we can determine the values of the decision variables. We need to ensure that at least 5 variables have non-zero values in the resulting solution.

Once the problem is modeled and solved, we can obtain the solution by finding the optimal values of the decision variables. The final solution can be represented as:

Answer: The optimal solution to the supply chain/logistics maximization problem is x_1 = a_1, x_2 = a_2, x_3 = a_3, x_4 = a_4, x_5 = a_5, x_6 = 0, x_7 = 0, x_8 = 0 with an objective function value of Z = \text{Optimal Value}.

Frequently asked questions (FAQs)
Math question: What is the smallest positive integer solution for the equation x^n + y^n = z^n, where n > 2 according to Fermat's Theorem? (
+
What is the result of adding vector A (2i + 3j - 4k) to vector B (5i - 2j + 6k)?
+
Question: Solve the polynomial expression 3x² + 7x + 4 by factoring.
+
New questions in Mathematics
Y=-x^2-8x-15 X=-7
Use the digits of 1,9,2,3 to come up with all the numbers 98 and 95
The gross domestic product the gdp for the United States in 2017 was approximately $2.05x10^3. If you wrote this number in standard notation , it would be 205 followed by how many zeros
What payment 7 months from now would be equivalent in value to a $3,300 payment due 23 months from now? The value of money is 2.7% simple interest. Round your answer to 2 decimal places. Show all work and how you arrive at the answer..
If L (-2, -5) reflected across y = -4. What are the coordinates of L?
Sean must chose a 6- digit PIN number for his online banking account.Each digit can be chosen from 0 to 9. How many different possible PIN numbers can sean chose.
Mrs. Emily saved RM10000 in a bank. At the end of the eighth year, the amount of money accumulated amounted to RM19992.71. If the bank pays an annual interest of x% for a year compounded every 6 months. Calculate the value of x.
78 percent to a decimal
Find the equation of the line perpendicular to −5𝑥−3𝑦+5=0 passing through the point (0,−2)
The thermal representation f(x) = 20 times 0.8 to the power of x is known from an exponential function f. Specify the intersection point with the y-axis
Find 2 numbers whose sum is 47 and whose subtraction is 13
Log5 625
Three machines called A, B and C, produce 43%, 26% and 31% of the total production of a company, respectively. Furthermore, it has been detected that 8%, 2% and 1.6% of the product manufactured by these machines is defective. a) What is the probability that a product is not defective? b) A product is selected at random and found to be defective, what is the probability that it was manufactured on machine B?
Determine the reduced form of the slope equation equal to 2
We have two distributions: A (M = 66.7, 95% CI = [60.3, 67.1]) / B (M = 71.3 95% CI = [67.7, 74.9]). Erin maintains that B is significantly larger than A. Provide your opinion on Erin’s argument and justify your opinion.
22. Let [AB] be a chord in a circle C, and k a circle which is internally tangent to the circle C at a point P and to the chord [AB] at a point Q. Show that the line P Q passes through the midpoint of the arc AB opposite to the arc APB.
The following incoming payments show up at a tax inspection: 25 000€ on 19.01.2008, 140 000€ on 27.03.2008 and 19 000€ on a date that which is illegible, and 60 000€ on 15.06.2008. On which date did the payment of the 19 000€ appear, if on 30.06.2008 the money on the account (incl. interest at 4%) is 246 088.89€? Use simple interest and 30E/360 DCC. Solution: 45 days, 15.05.08
Define excel and why we use it?
The supply of a good registers periodic increases. With each increase in the offer, the total receipts of the bidders increase. Indicate the correct statement: a) demand is elastic b) demand is inelastic c) supply is inelastic d) supply has unit elasticity.
Suppose a car license plate consists of 2 letters and two digits of which the first cannot be zero. How many different plates can be engraved? consider only 26 letters and 10 digits draw an example of this.