To find all matrices that commute with the matrix A, we need to find matrices B such that AB = BA.
Let B be the matrix:
B = \begin{bmatrix} a & b \ c & d \end{bmatrix}
Now, let's multiply AB and BA and set them equal to each other:
AB = \begin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \ c & d \end{bmatrix} = \begin{bmatrix} c & d \ 0 & 0 \end{bmatrix}
BA = \begin{bmatrix} a & b \ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a \ 0 & c \end{bmatrix}
Setting AB and BA equal to each other:
\begin{bmatrix} c & d \ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a \ 0 & c \end{bmatrix}
Comparing the entries, we get the following equations:
c = 0
d = a
This means that any matrix B that commutes with A has the form:
B = \begin{bmatrix} a & b \ 0 & a \end{bmatrix}
So, the matrices that commute with A are of the form:
\begin{bmatrix} a & b \ 0 & a \end{bmatrix}
where a and b can be any real numbers.
Answer: The matrices that commute with A are in the form \begin{bmatrix} a & b \ 0 & a \end{bmatrix}, where a and b can be any real numbers.