Question

y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)

139

likes
697 views

Answer to a math question y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)

Expert avatar
Hermann
4.6
126 Answers
نظرا لنظام المعادلات الخطية: ص′ = 2س + 3ص س′ = 7س – 4ص يمكننا استخدام طريقة المعادلات التفاضلية لإيجاد حل نظام المعادلات هذا. كخطوة أولى، دعونا نجد الصورة المتجانسة للمعادلات: ص' - 3ص = 2س س' - 7س = -4ص يمكن كتابة هذا النظام من المعادلات المتجانسة على شكل مصفوفة تمثل المعادلات المذكورة أعلاه على النحو التالي: [d/dt [x(t)] ] [ -7 4 ] [ x(t) ] [0] [d/dt [y(t)] ] = [ -2 3 ] [ y(t) ] + [0] معادلة المصفوفة هذه عبارة عن نظام من المعادلات الخطية المتجانسة من الدرجة الأولى التي تحتوي على المتجه [x(t), y(t)]. يمكن الحصول على حل معادلة المصفوفة هذه باستخدام القيم الذاتية والمتجهات الذاتية. لحساب القيم الذاتية، يتم حل المعادلة المميزة للمصفوفة: ديت (أ - μI) = 0 هنا A هي المصفوفة التي تحتوي على معاملات المصفوفة، و lect هي رمز القيم الذاتية، و I هي مصفوفة الهوية. المعادلة المميزة للمصفوفة هي: ديت ([-7-4 4] [-2 3-]) = 0 عندما نحل هذه المعادلة نجد قيمتين مختلفتين: ₁ = 1 ₂ = -3 لكل قيمة ذاتية، يمكننا حساب المتجهات الذاتية. لهذا، يتم حل المعادلة (A - αI) * v = 0، حيث v هو المتجه الذاتي. من أجل ς₁ = 1، (A - ς₁I) * v₁ = 0 [-8 4] [v₁₁] = [0] [-2 2] [v₁₂] = [0] عندما نحل هذه المعادلة، نحصل على المتجه الذاتي v₁ = [1، 2]. بالنسبة إلى ς₂ = -3، (A - ς₂I) * v₂ = 0 [4 4] [v₂₁] = [0] [-2 -6] [v₂₂] = [0] عندما نحل هذه المعادلة، نحصل على المتجه الذاتي v₂ = [-2، 1]. في الخطوة الأخيرة، نستخدم المتجهات الذاتية للحصول على الحل العام: [x(t)] [1 * e^χ₁t -2 * e₁₂t] [C₁] [y(t)] = [2 * e^lect₁t 1 * e^lect₂t] [C₂] هنا C₁ وC₂ ثوابت تمثل الظروف الأولية في الوقت t = 0. نظرًا لأن الشروط الأولية معطاة كـ x(0) = 2 و y(0) = -1، فيمكننا إيجاد قيم C₁ وC₂: [x(0)] [1 -2] [C₁] [2] [y(0)] = [2 1] [C₂] = [-1] عندما نحل هذه المعادلة، نحصل على C₁ = 0 وC₂ = -1. أخيرًا، باستبدال القيمتين C₁ وC₂ في الحل العام، نحصل على الحل: [x(t)] [1 * e^t -2 * e^(-3t)] [0] [e^t - 2 * e^(-3t)] [y(t)] = [2 * e^t 1 * e^(-3t)] [-1] = [2e^t - e^(-3t) - 1] وبهذه الطريقة، نحصل على حل نظام المعادلات الخطية المحدد.

Frequently asked questions (FAQs)
What is 3.5 x 10^4 in standard notation?
+
What is the mode of the following set of numbers: 5, 3, 7, 3, 9, 2, 2, 5, 7,
+
What is the value of (5^3 + √16) / (2^(2-1)) + (9^0 + 3^2) - 10?
+
New questions in Mathematics
𝑦 = ( 𝑥2 − 3) (𝑥3 + 2 𝑥 + 1)
-11+29-18
All the liquid contained in a barrel is distributed into 96 equal glasses up to its maximum capacity. We want to pour the same amount of liquid from another barrel identical to the previous one into glasses identical to those used, but only up to 3/4 of its capacity. How many more glasses will be needed for this?
Analyze the following situation Juan is starting a new business, he indicates that the price of his product corresponds to p=6000−4x , where x represent the number of tons produced and sold and p It is given in dollars. According to the previous information, what is the maximum income that Juan can obtain with his new product?
calculate the area in square units of A rectangle with length 6cm and breadth 5cm
In the telephone exchange of a certain university, calls come in at a rate of 5 every 2 minutes. Assuming a Poisson distribution, the average number of calls per second is: a) 1/8 b) 1/12 c) 1/10 d) 2/5 e) 1/24
A triangular window has a base of 6 ft. and a height of 7 ft. What is its area?
Let A, B, C and D be sets such that | A| = |C| and |B| = |D|. Prove that |A × B| = |C × D|
You are the newly appointed transport manager for Super Trucking (Pty) Ltd, which operates as a logistics service provider for various industries throughout southern Africa. One of these vehicles is a 4x2 Rigid Truck and drawbar trailer that covers 48,000 km per year. Use the assumptions below to answer the following questions (show all calculations): Overheads R 176,200 Cost of capital (% of purchase price per annum) 11.25% Annual License Fees—Truck R 16,100 Driver Monthly cost R 18,700 Assistant Monthly cost R 10,500 Purchase price: - Truck R 1,130,000 Depreciation: straight line method Truck residual value 25% Truck economic life (years) 5 Purchase price: Trailer R 370,000 Tyre usage and cost (c/km) 127 Trailer residual value 0% Trailer economic life (years) 10 Annual License Fees—Trailer R 7,700 Fuel consumption (liters/100km) 22 Fuel price (c/liter) 2053 Insurance (% of cost price) 7.5% Maintenance cost (c/km) 105 Distance travelled per year (km) 48000 Truck (tyres) 6 Trailer (tyres) 8 New tyre price (each) R 13,400 Lubricants (% of fuel cost) 2.5% Working weeks 50 Working days 5 days / week Profit margin 25% VAT 15% Q1. Calculate the annual total vehicle costs (TVC)
Use the sample data and confidence level given below to complete parts​ (a) through​ (d). A drug is used to help prevent blood clots in certain patients. In clinical​ trials, among 4336 patients treated with the​ drug, 194 developed the adverse reaction of nausea. Construct a ​99% confidence interval for the proportion of adverse reactions.
Use a pattern approach to explain why (-2)(-3)=6
30y - y . y = 144
Solve equations by equalization method X-8=-2y 2x+y=7
What is 75 percent less than 60
A cell phone company offers two calling plans. Plan A: $20 per month plus 5 cents for each minute, or Plan B: $30 per month plus 3 cents for each minute. [2] Write an equation to describe the monthly cost (a) C (in $) in terms of the time m (in minutes) of phone calls when Plan A is applied.
36 cars of the same model that were sold in a dealership, and the number of days that each one remained in the dealership yard before being sold is determined. The sample average is 9.75 days, with a sample standard deviation of 2, 39 days. Construct a 95% confidence interval for the population mean number of days that a car remains on the dealership's forecourt
A multiple choice exam is made up of 10 questions; Each question has 5 options and only one of them is correct. If a person answers at random, what is the probability of answering only 3 good questions?
Evaluate ab+dc if a=56 , b=−34 , c=0.4 , and d=12 . Write in simplest form.
A 20-year old hopes to retire by age 65. To help with future expenses, they invest $6 500 today at an interest rate of 6.4% compounded annually. At age 65, what is the difference between the exact accumulated value and the approximate accumulated value (using the Rule of 72)?
Construct a set of six pieces of data with​ mean, median, and midrange of 67 and where no two pieces of data are the same.