Question

y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)

139

likes
697 views

Answer to a math question y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)

Expert avatar
Hermann
4.6
128 Answers
نظرا لنظام المعادلات الخطية: ص′ = 2س + 3ص س′ = 7س – 4ص يمكننا استخدام طريقة المعادلات التفاضلية لإيجاد حل نظام المعادلات هذا. كخطوة أولى، دعونا نجد الصورة المتجانسة للمعادلات: ص' - 3ص = 2س س' - 7س = -4ص يمكن كتابة هذا النظام من المعادلات المتجانسة على شكل مصفوفة تمثل المعادلات المذكورة أعلاه على النحو التالي: [d/dt [x(t)] ] [ -7 4 ] [ x(t) ] [0] [d/dt [y(t)] ] = [ -2 3 ] [ y(t) ] + [0] معادلة المصفوفة هذه عبارة عن نظام من المعادلات الخطية المتجانسة من الدرجة الأولى التي تحتوي على المتجه [x(t), y(t)]. يمكن الحصول على حل معادلة المصفوفة هذه باستخدام القيم الذاتية والمتجهات الذاتية. لحساب القيم الذاتية، يتم حل المعادلة المميزة للمصفوفة: ديت (أ - μI) = 0 هنا A هي المصفوفة التي تحتوي على معاملات المصفوفة، و lect هي رمز القيم الذاتية، و I هي مصفوفة الهوية. المعادلة المميزة للمصفوفة هي: ديت ([-7-4 4] [-2 3-]) = 0 عندما نحل هذه المعادلة نجد قيمتين مختلفتين: ₁ = 1 ₂ = -3 لكل قيمة ذاتية، يمكننا حساب المتجهات الذاتية. لهذا، يتم حل المعادلة (A - αI) * v = 0، حيث v هو المتجه الذاتي. من أجل ς₁ = 1، (A - ς₁I) * v₁ = 0 [-8 4] [v₁₁] = [0] [-2 2] [v₁₂] = [0] عندما نحل هذه المعادلة، نحصل على المتجه الذاتي v₁ = [1، 2]. بالنسبة إلى ς₂ = -3، (A - ς₂I) * v₂ = 0 [4 4] [v₂₁] = [0] [-2 -6] [v₂₂] = [0] عندما نحل هذه المعادلة، نحصل على المتجه الذاتي v₂ = [-2، 1]. في الخطوة الأخيرة، نستخدم المتجهات الذاتية للحصول على الحل العام: [x(t)] [1 * e^χ₁t -2 * e₁₂t] [C₁] [y(t)] = [2 * e^lect₁t 1 * e^lect₂t] [C₂] هنا C₁ وC₂ ثوابت تمثل الظروف الأولية في الوقت t = 0. نظرًا لأن الشروط الأولية معطاة كـ x(0) = 2 و y(0) = -1، فيمكننا إيجاد قيم C₁ وC₂: [x(0)] [1 -2] [C₁] [2] [y(0)] = [2 1] [C₂] = [-1] عندما نحل هذه المعادلة، نحصل على C₁ = 0 وC₂ = -1. أخيرًا، باستبدال القيمتين C₁ وC₂ في الحل العام، نحصل على الحل: [x(t)] [1 * e^t -2 * e^(-3t)] [0] [e^t - 2 * e^(-3t)] [y(t)] = [2 * e^t 1 * e^(-3t)] [-1] = [2e^t - e^(-3t) - 1] وبهذه الطريقة، نحصل على حل نظام المعادلات الخطية المحدد.

Frequently asked questions (FAQs)
Question: In a triangle ABC, if angle B = 50°, side c = 10, and side a = 12, what is the value of angle C?
+
What is the product of (a + b)^2 using the Product Formula?
+
Math question: Given positive integers a, b, and c, what is the smallest value of n that satisfies the equation a^n + b^n = c^n, according to Fermat’s Theorem? (
+
New questions in Mathematics
8x²-30x-10x²+70x=-30x+10x²-20x²
-6n+5=-13
The sum of an infinite geometric series is 13,5 The sum of the same series, calculated from the third term is 1,5. Q. Calculate r if r>0.
Since one of the three integers whose product is (-60) is (+4), write the values that two integers can take.
A, B, C and D are numbers; If ABCD = 23, What is the result of ABCD BCDA CDAB DABC operation?
Determine the momentum of a 20 kg body traveling at 20 m/s.
The sum of two numbers is equal to 58 and the largest exceeds by at least 12. Find the two numbers
If you randomly selected one person from the 900 subjects in this study, what is the probability that the person exhibits the minimum BMI?
How much does the average college student spend on food per month? A random sample of 50 college students showed a sample mean $670 with a standard deviation $80. Obtain the 95% confidence interval for the amount college students spend on food per month.
3+7
-1%2F2x-4%3D18
Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.
5x+13+7x-10=99
Let X be a discrete random variable such that E(X)=3 and V(X)=5. Let 𝑌 = 2𝑋^2 − 3𝑋. Determine E(Y).
Kaya deposits 25,000 into an account that earns 3% interest compounded monthly. How much does Kaya have in the account after 6 years 8 months? Round to the nearest cent. 32,912.50 30,000 29,923.71 30,527.45
Cuboid containers (open at the top) should be examined with regard to their volume. The figure below shows a network of such containers (x ∈ Df). Determine a function ƒ (assignment rule and definition area D) that describes the volume of these containers and calculate the volume of such a container if the content of the base area is 16 dm². Show that this function f has neither a local maximum nor a global maximum
there are 500,000 bacteria at the end of a pin point. 1000 bacteria can make a person sick. then bacteria at the tip of a pin point can make 500 people sick. Also, many people do not know that bacteria can (reproduce). Let's say there are 5 bacteria and we leave it for 15 minutes. bacteria will multiply to 10. if left for up to 30 minutes, 20 bacteria will form. if left up to 45 minutes. bacteria will multiply up to 40. every 15 minutes the bacteria will double 2. if you start with five bacteria that reproduce every 15 minutes, how manu bacteria would you have after 12 hours ?
In a school playground When going out for recess, 80 men and 75 women coexist, the Patio measures 10 meters For 40 meters (what will be the population density in the break
Write decimal as the fraction 81/125 simplified
Find the orthogonal projection of a point A = (1, 2, -1) onto a line passing through the points Pi = (0, 1, 1) and P2 = (1, 2, 3).