Question

y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)

139

likes
697 views

Answer to a math question y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)

Expert avatar
Hermann
4.6
128 Answers
نظرا لنظام المعادلات الخطية: ص′ = 2س + 3ص س′ = 7س – 4ص يمكننا استخدام طريقة المعادلات التفاضلية لإيجاد حل نظام المعادلات هذا. كخطوة أولى، دعونا نجد الصورة المتجانسة للمعادلات: ص' - 3ص = 2س س' - 7س = -4ص يمكن كتابة هذا النظام من المعادلات المتجانسة على شكل مصفوفة تمثل المعادلات المذكورة أعلاه على النحو التالي: [d/dt [x(t)] ] [ -7 4 ] [ x(t) ] [0] [d/dt [y(t)] ] = [ -2 3 ] [ y(t) ] + [0] معادلة المصفوفة هذه عبارة عن نظام من المعادلات الخطية المتجانسة من الدرجة الأولى التي تحتوي على المتجه [x(t), y(t)]. يمكن الحصول على حل معادلة المصفوفة هذه باستخدام القيم الذاتية والمتجهات الذاتية. لحساب القيم الذاتية، يتم حل المعادلة المميزة للمصفوفة: ديت (أ - μI) = 0 هنا A هي المصفوفة التي تحتوي على معاملات المصفوفة، و lect هي رمز القيم الذاتية، و I هي مصفوفة الهوية. المعادلة المميزة للمصفوفة هي: ديت ([-7-4 4] [-2 3-]) = 0 عندما نحل هذه المعادلة نجد قيمتين مختلفتين: ₁ = 1 ₂ = -3 لكل قيمة ذاتية، يمكننا حساب المتجهات الذاتية. لهذا، يتم حل المعادلة (A - αI) * v = 0، حيث v هو المتجه الذاتي. من أجل ς₁ = 1، (A - ς₁I) * v₁ = 0 [-8 4] [v₁₁] = [0] [-2 2] [v₁₂] = [0] عندما نحل هذه المعادلة، نحصل على المتجه الذاتي v₁ = [1، 2]. بالنسبة إلى ς₂ = -3، (A - ς₂I) * v₂ = 0 [4 4] [v₂₁] = [0] [-2 -6] [v₂₂] = [0] عندما نحل هذه المعادلة، نحصل على المتجه الذاتي v₂ = [-2، 1]. في الخطوة الأخيرة، نستخدم المتجهات الذاتية للحصول على الحل العام: [x(t)] [1 * e^χ₁t -2 * e₁₂t] [C₁] [y(t)] = [2 * e^lect₁t 1 * e^lect₂t] [C₂] هنا C₁ وC₂ ثوابت تمثل الظروف الأولية في الوقت t = 0. نظرًا لأن الشروط الأولية معطاة كـ x(0) = 2 و y(0) = -1، فيمكننا إيجاد قيم C₁ وC₂: [x(0)] [1 -2] [C₁] [2] [y(0)] = [2 1] [C₂] = [-1] عندما نحل هذه المعادلة، نحصل على C₁ = 0 وC₂ = -1. أخيرًا، باستبدال القيمتين C₁ وC₂ في الحل العام، نحصل على الحل: [x(t)] [1 * e^t -2 * e^(-3t)] [0] [e^t - 2 * e^(-3t)] [y(t)] = [2 * e^t 1 * e^(-3t)] [-1] = [2e^t - e^(-3t) - 1] وبهذه الطريقة، نحصل على حل نظام المعادلات الخطية المحدد.

Frequently asked questions (FAQs)
[Math question] Find the equation of a circle with center (3, -2) and radius 5.
+
What are the characteristics of the hyperbola represented by the equation (x − 1)^2/3 − (y + 2)^2/4 = 1?
+
What is the equation of a parabola with a coefficient 'a' equal to -2, when the vertex is at (3, 4)?
+
New questions in Mathematics
Using a remarkable product you must factor the expression: f(x) =36x^2-324 and you are entitled to 5 steps
If we have the sequence: 3, 6, 12, 24 Please determine the 14th term.
X^2 = 25
The Lenovo company manufactures laptop computers, it is known that for every 60 laptops produced, 54 go on the market with the highest quality standards. If a sample of 15 laptops is taken, calculate the probability that: Exactly 2 are not of high quality
A soft drink machine outputs a mean of 23 ounces per cup. The machines output is normally distributed with a standard deviation of 3 ounces. What is the probability of filling a cup between 26 and 28 ounces round your answer to four decimal places
(2x+5)^3+(x-3)(x+3)
"If three wolves catch three rabbits in three hours, how many wolves would it take to catch a hundred rabbits in a hundred hours?" The answer is the number of response units.
The actual length of an object is 1.3 m . If the blueprint uses a scale of 1 : 12 , what is the length of the line on the drawing?
A pair of die is thrown and the absolute difference of the two scores is recorded. What is the probability of the absolute difference being 4 or more?
You are the newly appointed transport manager for Super Trucking (Pty) Ltd, which operates as a logistics service provider for various industries throughout southern Africa. One of these vehicles is a 4x2 Rigid Truck and drawbar trailer that covers 48,000 km per year. Use the assumptions below to answer the following questions (show all calculations): Overheads R 176,200 Cost of capital (% of purchase price per annum) 11.25% Annual License Fees—Truck R 16,100 Driver Monthly cost R 18,700 Assistant Monthly cost R 10,500 Purchase price: - Truck R 1,130,000 Depreciation: straight line method Truck residual value 25% Truck economic life (years) 5 Purchase price: Trailer R 370,000 Tyre usage and cost (c/km) 127 Trailer residual value 0% Trailer economic life (years) 10 Annual License Fees—Trailer R 7,700 Fuel consumption (liters/100km) 22 Fuel price (c/liter) 2053 Insurance (% of cost price) 7.5% Maintenance cost (c/km) 105 Distance travelled per year (km) 48000 Truck (tyres) 6 Trailer (tyres) 8 New tyre price (each) R 13,400 Lubricants (% of fuel cost) 2.5% Working weeks 50 Working days 5 days / week Profit margin 25% VAT 15% Q1. Calculate the annual total vehicle costs (TVC)
The maximum gauge pressure of a hydraulic ramp is 16 atm, with a support area whose diameter is 20 cm. What is the mass of the heaviest vehicle that can be lifted?
A vaccine has a 90% probability of being effective in preventing a certain disease. The probability of getting the disease if a person is not vaccinated is 50%. In a certain geographic region, 60% of the people get vaccinated. If a person is selected at random from this region, find the probability that he or she will contract the disease. (4 Points)
Let v be the set of all ordered pairs of real numbers and consider the scalar addition and multiplication operations defined by: u+v=(x,y)+(s,t)=(x+s+1,y+t -two) au=a.(x,y)=(ax+a-1,ay-2a+2) It is known that this set with the operations defined above is a vector space. A) calculate u+v is au for u=(-2,3),v=(1,-2) and a=2 B) show that (0,0) #0 Suggestion find a vector W such that u+w=u C) who is the vector -u D) show that axiom A4 holds:-u+u=0
Two minus log 3X equals log (X over 12)
-1%2F2x-4%3D18
-5x=115
How do you convert a fraction to a decimal
The average weekly earnings in the leisure and hospitality industry group for a re‐ cent year was $273. A random sample of 40 workers showed weekly average ear‐ nings of $285 with the population standard deviation equal to 58. At the 0.05 level of significance can it be concluded that the mean differs from $273? Find a 95% con‐ fidence interval for the weekly earnings and show that it supports the results of the hypothesis test.
-6 - t / 4 = -1
Emile organizes a community dance to raise funds. In addition to paying $300 to rent the room, she must rent chairs at $2 each. The quantity of chairs rented will be equal to the number of tickets sold. She sells tickets for $7 each. How much should she sell to raise money?