Question

y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)

139

likes
697 views

Answer to a math question y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)

Expert avatar
Hermann
4.6
126 Answers
نظرا لنظام المعادلات الخطية: ص′ = 2س + 3ص س′ = 7س – 4ص يمكننا استخدام طريقة المعادلات التفاضلية لإيجاد حل نظام المعادلات هذا. كخطوة أولى، دعونا نجد الصورة المتجانسة للمعادلات: ص' - 3ص = 2س س' - 7س = -4ص يمكن كتابة هذا النظام من المعادلات المتجانسة على شكل مصفوفة تمثل المعادلات المذكورة أعلاه على النحو التالي: [d/dt [x(t)] ] [ -7 4 ] [ x(t) ] [0] [d/dt [y(t)] ] = [ -2 3 ] [ y(t) ] + [0] معادلة المصفوفة هذه عبارة عن نظام من المعادلات الخطية المتجانسة من الدرجة الأولى التي تحتوي على المتجه [x(t), y(t)]. يمكن الحصول على حل معادلة المصفوفة هذه باستخدام القيم الذاتية والمتجهات الذاتية. لحساب القيم الذاتية، يتم حل المعادلة المميزة للمصفوفة: ديت (أ - μI) = 0 هنا A هي المصفوفة التي تحتوي على معاملات المصفوفة، و lect هي رمز القيم الذاتية، و I هي مصفوفة الهوية. المعادلة المميزة للمصفوفة هي: ديت ([-7-4 4] [-2 3-]) = 0 عندما نحل هذه المعادلة نجد قيمتين مختلفتين: ₁ = 1 ₂ = -3 لكل قيمة ذاتية، يمكننا حساب المتجهات الذاتية. لهذا، يتم حل المعادلة (A - αI) * v = 0، حيث v هو المتجه الذاتي. من أجل ς₁ = 1، (A - ς₁I) * v₁ = 0 [-8 4] [v₁₁] = [0] [-2 2] [v₁₂] = [0] عندما نحل هذه المعادلة، نحصل على المتجه الذاتي v₁ = [1، 2]. بالنسبة إلى ς₂ = -3، (A - ς₂I) * v₂ = 0 [4 4] [v₂₁] = [0] [-2 -6] [v₂₂] = [0] عندما نحل هذه المعادلة، نحصل على المتجه الذاتي v₂ = [-2، 1]. في الخطوة الأخيرة، نستخدم المتجهات الذاتية للحصول على الحل العام: [x(t)] [1 * e^χ₁t -2 * e₁₂t] [C₁] [y(t)] = [2 * e^lect₁t 1 * e^lect₂t] [C₂] هنا C₁ وC₂ ثوابت تمثل الظروف الأولية في الوقت t = 0. نظرًا لأن الشروط الأولية معطاة كـ x(0) = 2 و y(0) = -1، فيمكننا إيجاد قيم C₁ وC₂: [x(0)] [1 -2] [C₁] [2] [y(0)] = [2 1] [C₂] = [-1] عندما نحل هذه المعادلة، نحصل على C₁ = 0 وC₂ = -1. أخيرًا، باستبدال القيمتين C₁ وC₂ في الحل العام، نحصل على الحل: [x(t)] [1 * e^t -2 * e^(-3t)] [0] [e^t - 2 * e^(-3t)] [y(t)] = [2 * e^t 1 * e^(-3t)] [-1] = [2e^t - e^(-3t) - 1] وبهذه الطريقة، نحصل على حل نظام المعادلات الخطية المحدد.

Frequently asked questions (FAQs)
What is the measure, in degrees, of the acute angle formed by the hands of a clock at 5:30?
+
What is the probability of rolling 2 dice and getting a sum of 7?
+
Math Question: Find the extrema (maxima and minima) of the function f(x) = 2x^3 - 9x^2 + 12x + 3 in the interval [0,1].
+
New questions in Mathematics
Find 2 numbers that the sum of 1/3 of the first plus 1/5 of the second will be equal to 13 and that if you multiply the first by 5 and the second by 7 you get 247 as the sum of the two products with replacement solution
1/2x +3 <4x-7
4.2x10^_6 convert to standard notation
Two numbers differ by 7, and the sum of their squares is 29. Find the numbers.
A National Solidarity Bond offers A 5 year bond offering a gross return of 15% Calculate the AER for this investment. (Give your answer to two decimal places, no need for the percent or € sign in your answer)
4. Show that if n is any integer, then n^2 3n 5 is an odd integer
There are four times as many roses as tulips in Claire’s garden. Claire picked half of the number of roses and 140 roses were left in the garden. How many roses and tulips were in the Garden the first?
find f(x) for f'(x)=3x+7
User Before the election, a poll of 60 voters found the proportion who support the Green candidate to be 25%. Calculate the 90% confidence interval for the population parameter. (Give your answers as a PERCENTAGE rounded to TWO DECIMAL PLACES: exclude any trailing zeros and DO NOT INSERT THE % SIGN) Give the lower limit of the 90% confidence interval Give the upper limit of the 90% confidence interval
Shows two blocks, masses 4.3 kg and 5.4 kg, being pushed across a frictionless surface by a 22.5-N horizontal force applied to the 4.3-kg block. A. What is the acceleration of the blocks? B. What is the force of the 4.3-kg block on the 5.4 -kg block? C. What is the force of the 5.4 -kg block on the 4.3 -kg block?
User One of the applications of the derivative of a function is its use in Physics, where a function that at every instant t associates the number s(t), this function s is called the clockwise function of the movement. By deriving the time function we obtain the velocity function at time t, denoted by v(t). A body has a time function that determines its position in meters at time t as S(t)=t.³√t+2.t . Present the speed of this body at time t = 8 s.
Find the complement and supplement angles of 73
A contractor gives a bank note for $10250 at a rate of 1% for one month. How much interest is charged for 4 months?
To get to a hotel on the hill you have to travel 6 km of uphill road and every kilometer there are 6 sharp curves. Each of the sharp curves is marked by three traffic signs. How many traffic signs are there on the stretch of road that leads to the arbergi?
A person runs 175 yards per minute write a variable that represents the relationship between time and distance
The mean of 4 numbers is 5 and the mean of 3 different numbers is 12. What is the mean of the 7 numbers together? Produce an algebraic solution. Guess and check is acceptable.
2x-4=8
Determine the general solution of the equation y′+y=e−x .
Find the rule that connects the first number to the second number of each pair. Apply the rule to find the missing number in the third pair. (18 is to 22) (54 is to 26) (9 is to ?)
5 1/9 + 2 2/3