Question

y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)

139

likes
697 views

Answer to a math question y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)

Expert avatar
Hermann
4.6
126 Answers
نظرا لنظام المعادلات الخطية: ص′ = 2س + 3ص س′ = 7س – 4ص يمكننا استخدام طريقة المعادلات التفاضلية لإيجاد حل نظام المعادلات هذا. كخطوة أولى، دعونا نجد الصورة المتجانسة للمعادلات: ص' - 3ص = 2س س' - 7س = -4ص يمكن كتابة هذا النظام من المعادلات المتجانسة على شكل مصفوفة تمثل المعادلات المذكورة أعلاه على النحو التالي: [d/dt [x(t)] ] [ -7 4 ] [ x(t) ] [0] [d/dt [y(t)] ] = [ -2 3 ] [ y(t) ] + [0] معادلة المصفوفة هذه عبارة عن نظام من المعادلات الخطية المتجانسة من الدرجة الأولى التي تحتوي على المتجه [x(t), y(t)]. يمكن الحصول على حل معادلة المصفوفة هذه باستخدام القيم الذاتية والمتجهات الذاتية. لحساب القيم الذاتية، يتم حل المعادلة المميزة للمصفوفة: ديت (أ - μI) = 0 هنا A هي المصفوفة التي تحتوي على معاملات المصفوفة، و lect هي رمز القيم الذاتية، و I هي مصفوفة الهوية. المعادلة المميزة للمصفوفة هي: ديت ([-7-4 4] [-2 3-]) = 0 عندما نحل هذه المعادلة نجد قيمتين مختلفتين: ₁ = 1 ₂ = -3 لكل قيمة ذاتية، يمكننا حساب المتجهات الذاتية. لهذا، يتم حل المعادلة (A - αI) * v = 0، حيث v هو المتجه الذاتي. من أجل ς₁ = 1، (A - ς₁I) * v₁ = 0 [-8 4] [v₁₁] = [0] [-2 2] [v₁₂] = [0] عندما نحل هذه المعادلة، نحصل على المتجه الذاتي v₁ = [1، 2]. بالنسبة إلى ς₂ = -3، (A - ς₂I) * v₂ = 0 [4 4] [v₂₁] = [0] [-2 -6] [v₂₂] = [0] عندما نحل هذه المعادلة، نحصل على المتجه الذاتي v₂ = [-2، 1]. في الخطوة الأخيرة، نستخدم المتجهات الذاتية للحصول على الحل العام: [x(t)] [1 * e^χ₁t -2 * e₁₂t] [C₁] [y(t)] = [2 * e^lect₁t 1 * e^lect₂t] [C₂] هنا C₁ وC₂ ثوابت تمثل الظروف الأولية في الوقت t = 0. نظرًا لأن الشروط الأولية معطاة كـ x(0) = 2 و y(0) = -1، فيمكننا إيجاد قيم C₁ وC₂: [x(0)] [1 -2] [C₁] [2] [y(0)] = [2 1] [C₂] = [-1] عندما نحل هذه المعادلة، نحصل على C₁ = 0 وC₂ = -1. أخيرًا، باستبدال القيمتين C₁ وC₂ في الحل العام، نحصل على الحل: [x(t)] [1 * e^t -2 * e^(-3t)] [0] [e^t - 2 * e^(-3t)] [y(t)] = [2 * e^t 1 * e^(-3t)] [-1] = [2e^t - e^(-3t) - 1] وبهذه الطريقة، نحصل على حل نظام المعادلات الخطية المحدد.

Frequently asked questions (FAQs)
Math Question: What is the factored form of the quadratic equation x^2 + 7x + 12?
+
What is the vertex form equation of a quadratic function with a vertex at (-2, 5) and a axis of symmetry parallel to the y-axis?
+
Question: In triangle ABC, if angle A is equal to angle B and side AC is congruent to side BC, what can we conclude about triangle ABC?
+
New questions in Mathematics
The sum of an infinite geometric series is 13,5 The sum of the same series, calculated from the third term is 1,5. Q. Calculate r if r>0.
1/2x +3 <4x-7
Given that y = ×(2x + 1)*, show that dy = (2x + 1)" (Ax + B) dx where n, A and B are constants to be found.
solve the following trigo equation for 0°<= x <= 360°. sec x =-2
*Question!!* *Victory saved 3,000 in first bank and 2,000 Naira in union bank PSC with interest rate of X% and Y% per annual respectively his total interest in one year is #640. If she has saved 2,000 naira with first bank and 3,000 naira in union bank for same period she would have made extra 20# as additional interest, then find the value of X and Y
Additionally, the boss asked Armando to determine how many toy sales branches he would have in the fifteenth year, knowing that the first year they started with two branches, by the second they already had 5 branches and, by the third year, they had 8 branches. From the above, determine the number of branches it will have for the fifteenth year.
1 plus 1
A juice shop prepares assorted juices, for their juices they have 5 different types of fruit. How many types of assortments can be prepared in total, if it is considered an assortment to a juice made with two or more fruits?
Find the measures of the sides of ∆KPL and classify each triangle by its sides k (-2,-6), p (-4,0), l (3,-1)
You have been hired to estimate the average weight of quarters in circulation. Based on the sample of quarters you collect (below), create a 90% confidence interval for the weight of quarters in circulation. Quarter Weights (grams) 5.631 5.714 5.719 5.689 5.551 5.723 5.705 5.627 5.627 5.715 5.576 5.632 5.641 5.676 5.660 5.699 5.609 5.634 5.713 5.591 5.674 5.675 5.684 5.694 5.655 5.632 5.598 5.675 5.628 5.562 5.636 5.583 5.567 5.551 5.649 5.708 5.696 5.614 5.637 5.601 5.628 5.711 5.566 5.653 5.653 5.597 5.687 5.717 5.678 5.654 5.556 5.707 5.563 5.628 5.679 5.714 5.555 5.719 5.634 5.647 5.717 5.612 5.705 5.657 5.670 5.607 5.687 5.666 5.612 5.718 5.714 5.713 5.663 5.641 5.589 5.656 5.712 5.639 5.577 5.580 5.674 5.636 5.625 5.597 5.616 5.591 5.616 5.700 5.706 5.695 5.562 5.699 5.607 5.573 5.659 5.632 5.654 5.568 5.628 5.687 5.605 5.689 5.687 5.554 5.618 5.701 5.681 5.645 5.714 5.665 5.661 5.634 5.714 5.586 5.656 5.673 5.657 5.717 5.611 5.578 5.579 5.614 5.644 5.724 5.647 5.566 5.697 5.558 5.586 5.586 5.611 5.573 5.573 5.709 5.629 5.649 5.552 5.615 5.645 5.611 5.686 5.588 5.641 5.704 5.703 5.696 5.557 5.551 5.725 5.608 5.725 5.603 5.677 5.638 5.573 5.640 5.561 5.631 5.563 5.671 5.662 5.569 5.648 5.680 5.681 5.551 5.555 5.578 5.701 5.645 5.670 5.574 5.594 5.705 5.633 5.719 5.680 5.647 5.641 5.553 5.616 5.698 5.552 5.566 5.559 5.697 5.686 5.560 5.629 5.701 5.622 5.615 5.553 5.608 5.637 5.663 5.696 5.714 5.675 5.613 5.594 5.669 5.569 5.716 5.705 5.603 5.709 5.717 5.606 5.581 5.575 5.601 5.600 5.664 5.715 5.705 5.583 5.586 5.592 5.550 5.628 5.662 5.603 5.559 5.676 5.558 5.678 5.671 5.642 5.581 5.568 5.706 5.665 5.712 5.574 5.602 5.699 5.716 5.693 5.711 5.635 5.612 BLANK #1: Is this a question involving mean or proportion? ***ANSWER "MEAN" OR "PROPORTION" (WITHOUT THE QUOTATION MARKS)*** BLANK #2: What is the LOW end of the estimate ***ANSWER TO 3 DECIMALS*** BLANK #3: What is the HIGH end of the estimate ***ANSWER TO 3 DECIMALS***
According to a survey in a country 27% of adults do not own a credit card suppose a simple random sample of 800 adults is obtained . Describe the sampling distribution of P hat , the sample proportion of adults who do not own a credit card
The ninth term of a given geometric progression, with reason q , is 1792, and its fourth term is 56. Thus, calculate the fourth term of another geometric progression, whose ratio is q +1 and whose first term is equal to the first term of the first P.G. described.
In an audience of 4000 people, 2 people are chosen, at random, to appear on stage. How many ways can the people be chosen?
The points (-5,-4) and (3,6) are the ends of the diameter of the circle calculate subequation
A function is considered exponential when it has a base with positive values greater than zero and different from one, where the exponent is an unknown. An important characteristic of exponential functions is that they show rapid growth or decay as an independent variable increases or decreases. Given the function 25^(x+3)=125, it is calculated that x has the value of
How to factorise 5y^2 -7y -52
Evaluate ab+dc if a=56 , b=−34 , c=0.4 , and d=12 . Write in simplest form.
g(x)=3(x+8). What is the value of g(12)
To apply a diagnostic test, in how many ways can 14 students be chosen out of 25? if the order does not matter
Matilde knows that, when driving her car from her office to her apartment, she spends a normal time of x minutes. In the last week, you have noticed that when driving at 50 mph (miles per hour), you arrive home 4 minutes earlier than normal, and when driving at 40 mph, you arrive home 5 minutes earlier later than normal. If the distance between your office and your apartment is y miles, calculate x + y.