Question

Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.

191

likes
953 views

Answer to a math question Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.

Expert avatar
Cristian
4.7
118 Answers
Para determinar todas las razones trigonométricas de un triángulo rectángulo, primero necesitamos identificar qué medidas de lados tenemos disponibles: el cateto opuesto (el lado que es perpendicular al ángulo recto) y el cateto adyacente (el lado que forma uno de los ángulos agudos junto al ángulo recto).

A partir de estas medidas, podemos calcular las siguientes razones trigonométricas:

1. El seno del ángulo agudo:
\sin(\theta) = \frac{{\text{{cateto opuesto}}}}{{\text{{hipotenusa}}}}

2. El coseno del ángulo agudo:
\cos(\theta) = \frac{{\text{{cateto adyacente}}}}{{\text{{hipotenusa}}}}

3. La tangente del ángulo agudo:
\tan(\theta) = \frac{{\text{{cateto opuesto}}}}{{\text{{cateto adyacente}}}}

4. La cosecante del ángulo agudo:
\csc(\theta) = \frac{1}{{\sin(\theta)}}

5. La secante del ángulo agudo:
\sec(\theta) = \frac{1}{{\cos(\theta)}}

6. La cotangente del ángulo agudo:
\cot(\theta) = \frac{1}{{\tan(\theta)}}

Recuerda que el ángulo agudo se refiere al ángulo que no es el ángulo recto en el triángulo rectángulo.

En resumen, para determinar las razones trigonométricas de un triángulo rectángulo, necesitamos saber los valores del cateto opuesto y el cateto adyacente. A partir de ahí, podemos calcular el resto de las razones utilizando las fórmulas mencionadas.

\textbf{Respuesta: Las principales razones trigonométricas son el seno, coseno, tangente, cosecante, secante y cotangente del ángulo agudo en el triángulo rectángulo.}

Frequently asked questions (FAQs)
What is the length of side c in a triangle where angle A = 30°, angle B = 60°, and side b = 10, using the sine law?
+
What is the product of the sum of two numbers x and y, and the sum of their squares, given that x = 3 and y = 5?
+
What is the resultant vector when a vector of magnitude 10 units, directed at 30 degrees from the positive x-axis, is added to a vector of magnitude 7 units, directed at 60 degrees from the positive x-axis?
+
New questions in Mathematics
2.5 / 21.85
The miles per gallon (mpg) for each of 20 medium-sized cars selected from a production line during the month of March are listed below. 23.0 21.2 23.5 23.6 20.1 24.3 25.2 26.9 24.6 22.6 26.1 23.1 25.8 24.6 24.3 24.1 24.8 22.1 22.8 24.5 (a) Find the z-scores for the largest measurement. (Round your answers to two decimal places.) z =
4. Show that if n is any integer, then n^2 3n 5 is an odd integer
If the midpoint of point A on the x=3 line and point B on the y=-2 line is C(-2,0), what is the sum of the ordinate of point A and the abscissa of point B?
41/39 - 1/38
-3(-4x+5)=-6(7x-8)+9-10x
What is 28 marks out of 56 as a percentage
The cost of unleaded gasoline in the Bay Area once followed an unknown distribution with a mean of $4.59 and a standard deviation of $0.10. Sixteen gas stations from the Bay Area are randomly chosen. We are interested in the average cost of gasoline for the 16 gas stations. 84. Find the probability that the average price for 30 gas stations is less than $4.55. a 0.6554 b 0.3446 c 0.0142 d 0.9858 e 0
Two business partners have a bank balance of $17,942.00. After the first year their interest brings their balance to $18,928.91. What rate of interest is earned?
form a key for your lock containing the numbers 2 2 5 8 How many different keys can you form?
A person decides to invest money in fixed income securities to redeem it at the end of 3 years. In this way, you make monthly deposits of R$300.00 in the 1st year, R$400.00 in the 2nd year and R$500.00 in the 3rd year. Calculate the amount, knowing that compound interest is 0.6% per month for the entire period. The answer is 15,828.60
Use the power rule for logarithms to solve the following word problem exactly. If you invest $1, 000 at 5% interest compounded annually, how many years will it take before you have $2,000?
(2m+3)(4m+3)=0
What is 75 percent less than 60
-1%2F2x-4%3D18
ind the z-score for which 72% of the distribution's area lies between -z and z. -1.7417, 1.7417 -1.1538, 1.1538 -1.0803, 1.0803 -2.826, 2.826
Calculate the difference between 407 and 27
Cuboid containers (open at the top) should be examined with regard to their volume. The figure below shows a network of such containers (x ∈ Df). Determine a function ƒ (assignment rule and definition area D) that describes the volume of these containers and calculate the volume of such a container if the content of the base area is 16 dm². Show that this function f has neither a local maximum nor a global maximum
y’’ -4y’ +4y = (12x^2 -6x)e^2x Y(0)= 1 Y’(0)=0 Y(x)=c1y1+c2y2+yp
f(r) = 1/r+9 find f(x^2) + 1