Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.



Answer to a math question Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.

Expert avatar
61 Answers
Para determinar todas las razones trigonométricas de un triángulo rectángulo, primero necesitamos identificar qué medidas de lados tenemos disponibles: el cateto opuesto (el lado que es perpendicular al ángulo recto) y el cateto adyacente (el lado que forma uno de los ángulos agudos junto al ángulo recto).

A partir de estas medidas, podemos calcular las siguientes razones trigonométricas:

1. El seno del √°ngulo agudo:
\sin(\theta) = \frac{{\text{{cateto opuesto}}}}{{\text{{hipotenusa}}}}

2. El coseno del √°ngulo agudo:
\cos(\theta) = \frac{{\text{{cateto adyacente}}}}{{\text{{hipotenusa}}}}

3. La tangente del √°ngulo agudo:
\tan(\theta) = \frac{{\text{{cateto opuesto}}}}{{\text{{cateto adyacente}}}}

4. La cosecante del √°ngulo agudo:
\csc(\theta) = \frac{1}{{\sin(\theta)}}

5. La secante del √°ngulo agudo:
\sec(\theta) = \frac{1}{{\cos(\theta)}}

6. La cotangente del √°ngulo agudo:
\cot(\theta) = \frac{1}{{\tan(\theta)}}

Recuerda que el √°ngulo agudo se refiere al √°ngulo que no es el √°ngulo recto en el tri√°ngulo rect√°ngulo.

En resumen, para determinar las razones trigonométricas de un triángulo rectángulo, necesitamos saber los valores del cateto opuesto y el cateto adyacente. A partir de ahí, podemos calcular el resto de las razones utilizando las fórmulas mencionadas.

\textbf{Respuesta: Las principales razones trigonométricas son el seno, coseno, tangente, cosecante, secante y cotangente del ángulo agudo en el triángulo rectángulo.}

Frequently asked questions (FAQs)
Question: In the sine function f(x) = sin(x), what is the period of the function when expressed in degrees?
Math question: "What is the equation of a parabola with a vertex at (2, -3) and a focus at (2, -5)?
What is the dot product of vector A (3, -1, 2) and vector B (-2, 4, 5)?
New questions in Mathematics
Solution to the equation y'' - y' - 6y = 0
Solve: ‚ąí3(‚ąí2x+23)+12=6(‚ąí4x+9)+9.
If O(3,-2) is reflected across x = 2. What are the coordinates of O
The length and breadth of my rectangular vegetable garden is 12,5m and 7,25m respectively. What is the perimeter of the garden?
Elliot opened a savings account and deposited $5000.00 as principal. The account earns 4% interest, compounded annually. How much interest will he earn after 5 years? Round your answer to the nearest cent.
In a store there are packets of chocolate, strawberry, tutti-frutti, lemon, grape and banana sweets. If a person needs to choose 4 flavors of candy from those available, how many ways can they make that choice?
Two events E and F are‚Äč ________ if the occurrence of event E in a probability experiment does not affect the probability of event F.
Suppose 50% of the doctors and hospital are surgeons if a sample of 576 doctors is selected what is the probability that the sample proportion of surgeons will be greater than 55% round your answer to four decimal places
Divide 22 by 5 solve it by array and an area model
calculate the normal vector of line y = -0.75x + 3
If f(x,y)=6xy^2+3y^3 find (‚ąę3,-2) f(x,y)dx.
Let A, B, C and D be sets such that | A| = |C| and |B| = |D|. Prove that |A √ó B| = |C √ó D|
The simple average of 15 , 30 , 40 , and 45 is
In a physics degree course, there is an average dropout of 17 students in the first semester. What is the probability that the number of dropouts in the first semester in a randomly selected year has between 13 and 16 students?
17. A loan for $104259 is taken out for 10 years with an annual interest rate of 9.4%, compounded quarterly. What quarterly payment is required to pay the loan off in 10 years? Enter to the nearest cent (two decimals). Do not use $ signs or commas in the answer.
A multiple choice exam is made up of 10 questions; Each question has 5 options and only one of them is correct. If a person answers at random, what is the probability of answering only 3 good questions?
Translate to an equation and solve. Let x be the unknown number: What number is 52% of 81.
A buyer purchased a North Carolina home for $475,250. The seller allowed the buyer to assume his first small mortgage with a loan balance of $110,000. How much is the excise tax paid in the transaction? $951 $729.50 $950.50 $221 none of the above
A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 55.0 min at 100.0 km/h, 14.0 min at 65.0 km/h, and 45.0 min at 60.0 km/h and spends 20.0 min eating lunch and buying gas. (a) Determine the average speed for the trip.