Question

Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.

191

likes
953 views

Answer to a math question Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.

Expert avatar
Cristian
4.7
119 Answers
Para determinar todas las razones trigonométricas de un triángulo rectángulo, primero necesitamos identificar qué medidas de lados tenemos disponibles: el cateto opuesto (el lado que es perpendicular al ángulo recto) y el cateto adyacente (el lado que forma uno de los ángulos agudos junto al ángulo recto).

A partir de estas medidas, podemos calcular las siguientes razones trigonométricas:

1. El seno del ángulo agudo:
\sin(\theta) = \frac{{\text{{cateto opuesto}}}}{{\text{{hipotenusa}}}}

2. El coseno del ángulo agudo:
\cos(\theta) = \frac{{\text{{cateto adyacente}}}}{{\text{{hipotenusa}}}}

3. La tangente del ángulo agudo:
\tan(\theta) = \frac{{\text{{cateto opuesto}}}}{{\text{{cateto adyacente}}}}

4. La cosecante del ángulo agudo:
\csc(\theta) = \frac{1}{{\sin(\theta)}}

5. La secante del ángulo agudo:
\sec(\theta) = \frac{1}{{\cos(\theta)}}

6. La cotangente del ángulo agudo:
\cot(\theta) = \frac{1}{{\tan(\theta)}}

Recuerda que el ángulo agudo se refiere al ángulo que no es el ángulo recto en el triángulo rectángulo.

En resumen, para determinar las razones trigonométricas de un triángulo rectángulo, necesitamos saber los valores del cateto opuesto y el cateto adyacente. A partir de ahí, podemos calcular el resto de las razones utilizando las fórmulas mencionadas.

\textbf{Respuesta: Las principales razones trigonométricas son el seno, coseno, tangente, cosecante, secante y cotangente del ángulo agudo en el triángulo rectángulo.}

Frequently asked questions (FAQs)
What is the volume of a cone with radius 5 cm and height 8 cm? (V = 1/3 π r^2 h)
+
Math question: Convert 45 centimeters to inches.
+
Math Question: In a circle, if angle AOB is 60 degrees, what is the measure of angle ADC? (
+
New questions in Mathematics
2x-y=5 x-y=4
Calculate the equation of the tangent line ay=sin(x) cos⁡(x)en x=π/2
If O(3,-2) is reflected across x = 2. What are the coordinates of O
7273736363-8
(5y 9)-(y 7)
Three squares have a total area of 35.25 𝑐𝑚2 . The larger square has twice the side-length of the middle-sized square. The smaller square has its side length exactly 0.5 cm smaller than the middle-sixed square. Find the side lengths of each of the three squares.
The physician orders 15mg of tramadol(liquid). On hand is 30mg/2mL vials. How many mL will the MA administer?
4+168×10³×d1+36×10³×d2=-12 -10+36×10³×d1+72×10³×d2=0
Quadratic equation 2X = 15/X + 7
If the regression equation is given by 4x –y + 5 = 0, then the slope of regression line of y on x is
A car travels 211 miles on 15 gallons of gasoline. The best estimate of the car’s miles per gallon is?
Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π). cos30=0
A contractor gives a bank note for $10250 at a rate of 1% for one month. How much interest is charged for 4 months?
16.What payment (deposit) made at the end of each month will accumulate to $10473 in 13 years at 7.9% compounded monthly? Enter to the nearest cent (two decimals). Do not use $ signs or commas in the answer.
Log0
A given initial capital in simple interest at the annual rate and for 27 months produced the accumulated capital of 6600 um if the same capital had been invested at the same rate but during 28 months the said accumulated capital would be increased in an amount corresponding to 0.75% of the initial capital Calculate the initial capital and the annual rate at which it was invested
The area bounded by the curve y=ln(x) and the lines x=1 and x=4 above the x−axis is
The average weekly earnings in the leisure and hospitality industry group for a re‐ cent year was $273. A random sample of 40 workers showed weekly average ear‐ nings of $285 with the population standard deviation equal to 58. At the 0.05 level of significance can it be concluded that the mean differs from $273? Find a 95% con‐ fidence interval for the weekly earnings and show that it supports the results of the hypothesis test.
Carmen's age was twice as old as Luis was when Carmen was Luis's age. When Luis is Carmen's age, their ages will add up to 112.
5 1/9 + 2 2/3