Question

Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.

191

likes
953 views

Answer to a math question Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.

Expert avatar
Cristian
4.7
118 Answers
Para determinar todas las razones trigonométricas de un triángulo rectángulo, primero necesitamos identificar qué medidas de lados tenemos disponibles: el cateto opuesto (el lado que es perpendicular al ángulo recto) y el cateto adyacente (el lado que forma uno de los ángulos agudos junto al ángulo recto).

A partir de estas medidas, podemos calcular las siguientes razones trigonométricas:

1. El seno del ángulo agudo:
\sin(\theta) = \frac{{\text{{cateto opuesto}}}}{{\text{{hipotenusa}}}}

2. El coseno del ángulo agudo:
\cos(\theta) = \frac{{\text{{cateto adyacente}}}}{{\text{{hipotenusa}}}}

3. La tangente del ángulo agudo:
\tan(\theta) = \frac{{\text{{cateto opuesto}}}}{{\text{{cateto adyacente}}}}

4. La cosecante del ángulo agudo:
\csc(\theta) = \frac{1}{{\sin(\theta)}}

5. La secante del ángulo agudo:
\sec(\theta) = \frac{1}{{\cos(\theta)}}

6. La cotangente del ángulo agudo:
\cot(\theta) = \frac{1}{{\tan(\theta)}}

Recuerda que el ángulo agudo se refiere al ángulo que no es el ángulo recto en el triángulo rectángulo.

En resumen, para determinar las razones trigonométricas de un triángulo rectángulo, necesitamos saber los valores del cateto opuesto y el cateto adyacente. A partir de ahí, podemos calcular el resto de las razones utilizando las fórmulas mencionadas.

\textbf{Respuesta: Las principales razones trigonométricas son el seno, coseno, tangente, cosecante, secante y cotangente del ángulo agudo en el triángulo rectángulo.}

Frequently asked questions (FAQs)
What is the product of 243 and 85?
+
What are the real solutions of the equation x^3 - 2x^2 + 3x - 1 = 0?
+
What is the number of ways to arrange 5 books from a collection of 10 books?
+
New questions in Mathematics
A pump with average discharge of 30L/second irrigate 100m wide and 100m length field area crop for 12 hours. What is an average depth of irrigation in mm unIt?
The patient is prescribed a course of 30 tablets. The tablets are prescribed “1 tablet twice a day”. How many days does a course of medication last?
Calculate the equation of the tangent line ay=sin(x) cos⁡(x)en x=π/2
What’s 20% of 125?
(5u + 6)-(3u+2)=
If the midpoint of point A on the x=3 line and point B on the y=-2 line is C(-2,0), what is the sum of the ordinate of point A and the abscissa of point B?
A person borrows rm 1000 from a bank at an interest rate of 10%. After some time, he pays the bank rm 1900 as full and final settlement of the loan. Estimate the duration of his loan.
4x/2+5x-3/6=7/8-1/4-x
There are four times as many roses as tulips in Claire’s garden. Claire picked half of the number of roses and 140 roses were left in the garden. How many roses and tulips were in the Garden the first?
Suppose the Golf ball market is perfectly competitive and the functions are known: Q = 120 – 2Px – 2Py 0.2I Q = 2Px 40 Where I = Consumers' income ($200) and Py = Price of Good Y (40) Calculate the equilibrium elasticity: a) 1.6 b) -6 c) 6 d) 0.6
The ninth term of a given geometric progression, with reason q , is 1792, and its fourth term is 56. Thus, calculate the fourth term of another geometric progression, whose ratio is q +1 and whose first term is equal to the first term of the first P.G. described.
If X1 and X2 are independent standard normal variables, find P(X1^2 + X2^2 > 2.41)
30y - y . y = 144
Determine the increase of the function y=4x−5 when the argument changes from x1=2 to x2=3
Find each coefficient described. Coefficient of u^2 in expansion of (u - 3)^3
A teacher has 25 red and yellow counters altogether. She has 4 times as many red counters than yellow counters. How many yellow counters does the teacher have?
In a laboratory test, it was found that a certain culture of bacteria develops in a favorable environment, doubling its population every 2 hours. The test started with a population of 100 bacteria. After six hours, it is estimated that the number of bacteria will be:
X^X =49 X=?
Find the equation of a straight line that has slope 3 and passes through the point of (1, 7) . Write the equation of the line in general forms
-1/3x+15=18