Question

The points (-5,-4) and (3,6) are the ends of the diameter of the circle calculate subequation

289

likes
1444 views

Answer to a math question The points (-5,-4) and (3,6) are the ends of the diameter of the circle calculate subequation

Expert avatar
Frederik
4.6
101 Answers
Para calcular la ecuación de una circunferencia, necesitamos determinar su centro y su radio.

Paso 1: Encontrar el centro de la circunferencia
El centro de una circunferencia se encuentra en el punto medio de su diámetro. En este caso, los extremos del diámetro son (-5, -4) y (3, 6).

La fórmula para encontrar el punto medio de un segmento de línea con extremos (x1, y1) y (x2, y2) es:

(\frac{x1+x2}{2}, \frac{y1+y2}{2})

Aplicando la fórmula, encontramos que el centro de la circunferencia es:

(-5, -4) + (3, 6) / 2 = (-1, 1)

Paso 2: Encontrar el radio de la circunferencia
El radio de una circunferencia se puede encontrar calculando la distancia entre cualquiera de sus extremos del diámetro y el centro. En este caso, podemos usar la fórmula de distancia entre dos puntos:

d = \sqrt{{(x2-x1)^2 + (y2-y1)^2}}

Usando los puntos (-5, -4) y (-1, 1), la distancia es:

d = \sqrt{{(-1-(-5))^2 + (1-(-4))^2}} = \sqrt{{16 + 25}} = \sqrt{{41}}

Paso 3: Escribir la ecuación de la circunferencia
La ecuación de una circunferencia con centro (h, k) y radio r es:

(x-h)^2 + (y-k)^2 = r^2

En este caso, el centro es (-1, 1) y el radio es \sqrt{{41}} :

(x-(-1))^2 + (y-1)^2 = (\sqrt{{41}})^2

Simplificando:

(x+1)^2 + (y-1)^2 = 41

¡Respuesta! La ecuación de la circunferencia es (x+1)^2 + (y-1)^2 = 41

Frequently asked questions (FAQs)
What is the degree measure of an angle in radians when its value is π/4?
+
What is the formula for the volume of an ellipsoid given its semi-axes lengths (a, b, and c)?
+
What is the equation of an ellipse centered at the origin with a major axis of length 10 and a minor axis of length 6?
+
New questions in Mathematics
Solution to the equation y'' - y' - 6y = 0
Exercise 4 - the line (AC) is perpendicular to the line (AB) - the line (EB) is perpendicular to the line (AB) - the lines (AE) and (BC) intersect at D - AC = 2.4 cm; BD = 2.5 cm: DC = 1.5 cm Determine the area of triangle ABE.
Using the integration by parts method, calculate the integral of [x².ln(1/x)]dx: x 4 /4 x³/6 x 4 /8 x³/3 x 4 /6
The equation of the circle that passes through (5,3) and is tangent to the abscissa axis at x=2 is a.(x-2)^2 (y 3)^2 = 9 b.(x-2)^2 (y-3)^2 = 9 c.(x-2)^2 (y-3)^2 = 4 d.(x-2)^2 (y 1)^2 = 4 e.(x-2)^2 (y-1)^2 = 4
Sean must chose a 6- digit PIN number for his online banking account.Each digit can be chosen from 0 to 9. How many different possible PIN numbers can sean chose.
If the midpoint of point A on the x=3 line and point B on the y=-2 line is C(-2,0), what is the sum of the ordinate of point A and the abscissa of point B?
41/39 - 1/38
A warehouse employs 23 workers on first​ shift, 19 workers on second​ shift, and 12 workers on third shift. Eight workers are chosen at random to be interviewed about the work environment. Find the probability of choosing exactly five first ​-shift workers.
28 is 92 percent of what?
Given (3x+2)E [2;14] how much money (in soles) does Sophia have if numerically it is the greatest value of x?
TEST 123123+1236ttttt
Two minus log 3X equals log (X over 12)
The population of Pittsburgh, Pennsylvania, fell from 520,117 in 1970 to 305,704 in 2010. Write an exponential function P(t) modeling the population t years after 1970. Round the growth factor to the nearest tem thousandth.
Solve equations by equalization method X-8=-2y 2x+y=7
A cell phone company offers two calling plans. Plan A: $20 per month plus 5 cents for each minute, or Plan B: $30 per month plus 3 cents for each minute. [2] Write an equation to describe the monthly cost (a) C (in $) in terms of the time m (in minutes) of phone calls when Plan A is applied.
factor the polynomial completely over the set of complex numbers b(x)=x^4-2x^3-17x^2+4x+30
Consider mixing 150 ml, 0.1M, HCI with 100 ml, 0.2M, KOH solution. Determine the pH of final solution.
the product of a 2-digit number and a 3-digit number is about 50000, what are these numbers
Determine the general solution of the equation y′+y=e−x .
8(x+4) -4=4x-1