Question

viii. An ac circuit with a 80 μF capacitor in series with a coil of resistance 16Ω and inductance 160mH is connected to a 100V, 100 Hz supply is shown below. Calculate 7. the inductive reactance 8. the capacitive reactance 9. the circuit impedance and V-I phase angle θ 10. the circuit current I 11. the phasor voltages VR, VL, VC and VS 12. the resonance circuit frequency Also construct a fully labeled and appropriately ‘scaled’ voltage phasor diagram.

241

likes
1204 views

Answer to a math question viii. An ac circuit with a 80 μF capacitor in series with a coil of resistance 16Ω and inductance 160mH is connected to a 100V, 100 Hz supply is shown below. Calculate 7. the inductive reactance 8. the capacitive reactance 9. the circuit impedance and V-I phase angle θ 10. the circuit current I 11. the phasor voltages VR, VL, VC and VS 12. the resonance circuit frequency Also construct a fully labeled and appropriately ‘scaled’ voltage phasor diagram.

Expert avatar
Frederik
4.6
103 Answers
To calculate the values requested, we will use the following formulas:

1. Inductive reactance (XL) is given by the formula XL = 2πfL, where f is the frequency and L is the inductance.
2. Capacitive reactance (XC) is given by the formula XC = 1 / (2πfC), where f is the frequency and C is the capacitance.
3. Circuit impedance (Z) is given by the formula Z = √(R^2 + (XL - XC)^2), where R is the resistance, XL is the inductive reactance, and XC is the capacitive reactance.
4. V-I phase angle (θ) is given by the formula θ = atan((XL - XC)/R), where XL is the inductive reactance, XC is the capacitive reactance, and R is the resistance.
5. Circuit current (I) is given by the formula I = V / Z, where V is the supply voltage and Z is the circuit impedance.
6. Phasor voltages are calculated by multiplying the circuit current by the respective reactance values (VR = I * R, VL = I * XL, VC = I * XC, VS = I * Z).
7. Resonance frequency (fr) is given by the formula fr = 1 / (2π√(LC)), where L is the inductance and C is the capacitance.

Now let's calculate the values step by step.

7. Inductive Reactance (XL):
XL = 2πfL
= 2π * 100 Hz * 160 mH (converting 160 mH to Henries)
= 0.1 * π * 16 ohms
= 5π ohms

Answer: XL = 5π ohms

8. Capacitive Reactance (XC):
XC = 1 / (2πfC)
= 1 / (2π * 100 Hz * 80 μF (converting 80 μF to Farads)
= 1 / (0.1 * π * 80 ohms)
= 1 / (8π ohms)

Answer: XC = 1 / (8π ohms)

9. Circuit Impedance (Z) and V-I Phase Angle (θ):
Z = √(R^2 + (XL - XC)^2)
= √((16 ohms)^2 + (5π ohms - 1/(8π ohms))^2)
≈ 21.01 ohms

θ = atan((XL - XC)/R)
= atan((5π ohms - 1/(8π ohms))/16 ohms)
≈ 1.04 radians

Answer: Z ≈ 21.01 ohms, θ ≈ 1.04 radians

10. Circuit Current (I):
I = V / Z
= 100V / 21.01 ohms
≈ 4.76 A

Answer: I ≈ 4.76 A

11. Phasor Voltages (VR, VL, VC, VS):
VR = I * R
= 4.76 A * 16 ohms
= 76.16 V

VL = I * XL
= 4.76 A * 5π ohms
≈ 15π V

VC = I * XC
= 4.76 A * 1/(8π ohms)
≈ 0.15π V

VS = I * Z
= 4.76 A * 21.01 ohms
≈ 100 V

Answer: VR ≈ 76.16 V, VL ≈ 15π V, VC ≈ 0.15π V, VS ≈ 100 V

12. Resonance Circuit Frequency (fr):
fr = 1 / (2π√(LC))
= 1 / (2π√((160 mH) * (80 μF)))
= 1 / (2π√(0.16 H * 0.08 F))
= 1 / (2π√(0.0128))
≈ 9.86 Hz

Answer: fr ≈ 9.86 Hz


Frequently asked questions (FAQs)
Question: What is the volume of a rectangular prism with length 8 cm, width 6 cm, and height 10 cm?
+
What is the period and asymptotes of the cotangent function f(x) = cot(x)?
+
What is the factored form of the quadratic equation x^2 + 7x + 10?
+
New questions in Mathematics
calculate the derivative by the limit definition: f(x) = 6x^3 + 2
String x = 5 Int y=2 System.out.println(x+y)
The profit G of the company CHUNCHES SA is given by G(x) = 3×(40 – ×), where × is the quantity of items sold. Find the maximum profit.
Consider numbers from 1 to 2023. We want to delete 3 consecutive, so that the avarage of the left numbers is a whole number. How do we do that
A brass cube with an edge of 3 cm at 40 °C increased its volume to 27.12 cm3. What is the final temperature that achieves this increase?
The actual length of an object is 1.3 m . If the blueprint uses a scale of 1 : 12 , what is the length of the line on the drawing?
the probabilty that a person has a motorcycle, given that she owns a car 25%. the percentage of people owing a motorcycle is 15% and that who own a car is 35%. find probabilty that a person owns any one or both of those
2/3+5/6×1/2
(24, -7) is on the terminal arm of an angle in standard position. Determine the exact values of the primary trigonometric functions.
The market for economics textbooks is represented by the following supply and demand equations: P = 5 + 2Qs P = 20 - Qd Where P is the price in £s and Qs and Qd are the quantities supplied and demanded in thousands. What is the equilibrium price?
Fill in the P(X-x) values to give a legitimate probability distribution for the discrete random variable X, whose possible values are -5 ,3 , 4, 5 , and 6.
List the remaining zeros of the polynomial with the given zeros Zeros are: 2, 3i, and 3 + i
2X+2=8
What is the total amount due and the amount of interest on a 3-year loan of $1,000 at a simple interest rate of 12% per year?
X^X =49 X=?
8. Measurement Jillian measured the distance around a small fish pond to be 27 yards. What would be a good estimate of the distance across the pond: 14 yards, 9 yards, or 7 yards? Explain how you decided.
9n + 7(-8 + 4k) use k=2 and n=3
6(k-7) -2=5
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.
Construct a set of six pieces of data with​ mean, median, and midrange of 67 and where no two pieces of data are the same.