Question

viii. An ac circuit with a 80 μF capacitor in series with a coil of resistance 16Ω and inductance 160mH is connected to a 100V, 100 Hz supply is shown below. Calculate 7. the inductive reactance 8. the capacitive reactance 9. the circuit impedance and V-I phase angle θ 10. the circuit current I 11. the phasor voltages VR, VL, VC and VS 12. the resonance circuit frequency Also construct a fully labeled and appropriately ‘scaled’ voltage phasor diagram.

241

likes
1204 views

Answer to a math question viii. An ac circuit with a 80 μF capacitor in series with a coil of resistance 16Ω and inductance 160mH is connected to a 100V, 100 Hz supply is shown below. Calculate 7. the inductive reactance 8. the capacitive reactance 9. the circuit impedance and V-I phase angle θ 10. the circuit current I 11. the phasor voltages VR, VL, VC and VS 12. the resonance circuit frequency Also construct a fully labeled and appropriately ‘scaled’ voltage phasor diagram.

Expert avatar
Frederik
4.6
101 Answers
To calculate the values requested, we will use the following formulas:

1. Inductive reactance (XL) is given by the formula XL = 2πfL, where f is the frequency and L is the inductance.
2. Capacitive reactance (XC) is given by the formula XC = 1 / (2πfC), where f is the frequency and C is the capacitance.
3. Circuit impedance (Z) is given by the formula Z = √(R^2 + (XL - XC)^2), where R is the resistance, XL is the inductive reactance, and XC is the capacitive reactance.
4. V-I phase angle (θ) is given by the formula θ = atan((XL - XC)/R), where XL is the inductive reactance, XC is the capacitive reactance, and R is the resistance.
5. Circuit current (I) is given by the formula I = V / Z, where V is the supply voltage and Z is the circuit impedance.
6. Phasor voltages are calculated by multiplying the circuit current by the respective reactance values (VR = I * R, VL = I * XL, VC = I * XC, VS = I * Z).
7. Resonance frequency (fr) is given by the formula fr = 1 / (2π√(LC)), where L is the inductance and C is the capacitance.

Now let's calculate the values step by step.

7. Inductive Reactance (XL):
XL = 2πfL
= 2π * 100 Hz * 160 mH (converting 160 mH to Henries)
= 0.1 * π * 16 ohms
= 5π ohms

Answer: XL = 5π ohms

8. Capacitive Reactance (XC):
XC = 1 / (2πfC)
= 1 / (2π * 100 Hz * 80 μF (converting 80 μF to Farads)
= 1 / (0.1 * π * 80 ohms)
= 1 / (8π ohms)

Answer: XC = 1 / (8π ohms)

9. Circuit Impedance (Z) and V-I Phase Angle (θ):
Z = √(R^2 + (XL - XC)^2)
= √((16 ohms)^2 + (5π ohms - 1/(8π ohms))^2)
≈ 21.01 ohms

θ = atan((XL - XC)/R)
= atan((5π ohms - 1/(8π ohms))/16 ohms)
≈ 1.04 radians

Answer: Z ≈ 21.01 ohms, θ ≈ 1.04 radians

10. Circuit Current (I):
I = V / Z
= 100V / 21.01 ohms
≈ 4.76 A

Answer: I ≈ 4.76 A

11. Phasor Voltages (VR, VL, VC, VS):
VR = I * R
= 4.76 A * 16 ohms
= 76.16 V

VL = I * XL
= 4.76 A * 5π ohms
≈ 15π V

VC = I * XC
= 4.76 A * 1/(8π ohms)
≈ 0.15π V

VS = I * Z
= 4.76 A * 21.01 ohms
≈ 100 V

Answer: VR ≈ 76.16 V, VL ≈ 15π V, VC ≈ 0.15π V, VS ≈ 100 V

12. Resonance Circuit Frequency (fr):
fr = 1 / (2π√(LC))
= 1 / (2π√((160 mH) * (80 μF)))
= 1 / (2π√(0.16 H * 0.08 F))
= 1 / (2π√(0.0128))
≈ 9.86 Hz

Answer: fr ≈ 9.86 Hz


Frequently asked questions (FAQs)
What is the equation of an ellipse with a center at (-2,3), major axis length of 10, and minor axis length of 6?
+
Math question: "Graph the equation y = 2x + 3. Find the slope and y-intercept. Then, plot two points on the line.
+
What is the value of x in the logarithmic equation log(base 3)x = 5?
+
New questions in Mathematics
-11+29-18
58+861-87
A brass cube with an edge of 3 cm at 40 °C increased its volume to 27.12 cm3. What is the final temperature that achieves this increase?
The data set (75, 85, 58, 72, 70, 75) is a random sample from the normal distribution No(µ, σ). Determine a 95% two-sided confidence interval for the mean µ .
(2b) to the 1/4th power. Write the expression in radical form.
prove that if n odd integer then n^2+5 is even
Let r: x - y 5 = 0. Determine a general equation of the line s parallel to the line r, which forms an isosceles triangle with area 8 with the line x = 5 and the Ox axis.
The cost of unleaded gasoline in the Bay Area once followed an unknown distribution with a mean of $4.59 and a standard deviation of $0.10. Sixteen gas stations from the Bay Area are randomly chosen. We are interested in the average cost of gasoline for the 16 gas stations. 84. Find the probability that the average price for 30 gas stations is less than $4.55. a 0.6554 b 0.3446 c 0.0142 d 0.9858 e 0
A storage maker price is $2.50 per square feet. Find the price of a custom shed 4 yards long, and 5yards wide and 8 feet tall
Estimate the quotient for 3.24 ÷ 82
(2m+3)(4m+3)=0
Calculate the difference between 407 and 27
Let X be a discrete random variable such that E(X)=3 and V(X)=5. Let 𝑌 = 2𝑋^2 − 3𝑋. Determine E(Y).
48 kg of 30% sulfuric acid in a mixture of 10% and 40% sulfuric acid arose. How many kilograms were each of the original solutions?
A person runs 175 yards per minute write a variable that represents the relationship between time and distance
0<x<2π aralığındaki f(x)=x÷2 fonksiyonunun 0 < x < 4π için grafiğini çiziniz ve 0<x<2n için Fourier seri dönüşümünü gerçekleştiriniz.
8. Measurement Jillian measured the distance around a small fish pond to be 27 yards. What would be a good estimate of the distance across the pond: 14 yards, 9 yards, or 7 yards? Explain how you decided.
the length of the fenced in area is to be 5 ft greater than the width and the total amount of fencing to be used is 89 ft find the width and length
Dano forgot his computer password. The password was four characters long. Dano remembered only three characters: 3, g, N. The last character was one of the numbers 3, 5, 7, 9. How many possible expansions are there for Dano's password?
A plant found at the bottom of a lake doubles in size every 10 days. Yeah It is known that in 300 days it has covered the entire lake, indicate how many days it will take to cover the entire lake four similar plants.