Question

viii. An ac circuit with a 80 μF capacitor in series with a coil of resistance 16Ω and inductance 160mH is connected to a 100V, 100 Hz supply is shown below. Calculate 7. the inductive reactance 8. the capacitive reactance 9. the circuit impedance and V-I phase angle θ 10. the circuit current I 11. the phasor voltages VR, VL, VC and VS 12. the resonance circuit frequency Also construct a fully labeled and appropriately ‘scaled’ voltage phasor diagram.

241

likes
1204 views

Answer to a math question viii. An ac circuit with a 80 μF capacitor in series with a coil of resistance 16Ω and inductance 160mH is connected to a 100V, 100 Hz supply is shown below. Calculate 7. the inductive reactance 8. the capacitive reactance 9. the circuit impedance and V-I phase angle θ 10. the circuit current I 11. the phasor voltages VR, VL, VC and VS 12. the resonance circuit frequency Also construct a fully labeled and appropriately ‘scaled’ voltage phasor diagram.

Expert avatar
Frederik
4.6
57 Answers
To calculate the values requested, we will use the following formulas:

1. Inductive reactance (XL) is given by the formula XL = 2πfL, where f is the frequency and L is the inductance.
2. Capacitive reactance (XC) is given by the formula XC = 1 / (2πfC), where f is the frequency and C is the capacitance.
3. Circuit impedance (Z) is given by the formula Z = √(R^2 + (XL - XC)^2), where R is the resistance, XL is the inductive reactance, and XC is the capacitive reactance.
4. V-I phase angle (θ) is given by the formula θ = atan((XL - XC)/R), where XL is the inductive reactance, XC is the capacitive reactance, and R is the resistance.
5. Circuit current (I) is given by the formula I = V / Z, where V is the supply voltage and Z is the circuit impedance.
6. Phasor voltages are calculated by multiplying the circuit current by the respective reactance values (VR = I * R, VL = I * XL, VC = I * XC, VS = I * Z).
7. Resonance frequency (fr) is given by the formula fr = 1 / (2π√(LC)), where L is the inductance and C is the capacitance.

Now let's calculate the values step by step.

7. Inductive Reactance (XL):
XL = 2πfL
= 2π * 100 Hz * 160 mH (converting 160 mH to Henries)
= 0.1 * π * 16 ohms
= 5π ohms

Answer: XL = 5π ohms

8. Capacitive Reactance (XC):
XC = 1 / (2πfC)
= 1 / (2π * 100 Hz * 80 μF (converting 80 μF to Farads)
= 1 / (0.1 * π * 80 ohms)
= 1 / (8π ohms)

Answer: XC = 1 / (8π ohms)

9. Circuit Impedance (Z) and V-I Phase Angle (θ):
Z = √(R^2 + (XL - XC)^2)
= √((16 ohms)^2 + (5π ohms - 1/(8π ohms))^2)
≈ 21.01 ohms

θ = atan((XL - XC)/R)
= atan((5π ohms - 1/(8π ohms))/16 ohms)
≈ 1.04 radians

Answer: Z ≈ 21.01 ohms, θ ≈ 1.04 radians

10. Circuit Current (I):
I = V / Z
= 100V / 21.01 ohms
≈ 4.76 A

Answer: I ≈ 4.76 A

11. Phasor Voltages (VR, VL, VC, VS):
VR = I * R
= 4.76 A * 16 ohms
= 76.16 V

VL = I * XL
= 4.76 A * 5π ohms
≈ 15π V

VC = I * XC
= 4.76 A * 1/(8π ohms)
≈ 0.15π V

VS = I * Z
= 4.76 A * 21.01 ohms
≈ 100 V

Answer: VR ≈ 76.16 V, VL ≈ 15π V, VC ≈ 0.15π V, VS ≈ 100 V

12. Resonance Circuit Frequency (fr):
fr = 1 / (2π√(LC))
= 1 / (2π√((160 mH) * (80 μF)))
= 1 / (2π√(0.16 H * 0.08 F))
= 1 / (2π√(0.0128))
≈ 9.86 Hz

Answer: fr ≈ 9.86 Hz


Frequently asked questions (FAQs)
What are the factors of 28?
+
What is the measure of angle BAC if angle BAD measures 60 degrees and the angle bisector of angle BAD intersects BC at point E?
+
What is the formula for finding the lateral surface area of a cone?
+
New questions in Mathematics
Calculate to represent the function whose graph is a line that passes through the points (1,2) and (−3,4). What is your slope?
reduction method 2x-y=13 x+y=-1
The profit G of the company CHUNCHES SA is given by G(x) = 3×(40 – ×), where × is the quantity of items sold. Find the maximum profit.
(5u + 6)-(3u+2)=
2x2 and how much?
sin 30
Two business partners have a bank balance of $17,942.00. After the first year their interest brings their balance to $18,928.91. What rate of interest is earned?
Convert 5/9 to a decimal
At the dance there are 150 boys the rest are girls. If 65% are girls what is the total amount in the room
392929-9
The grading on a $159,775 house comes to $3974.75. What percent of the total cost is this? (Express your answer to the nearest hundredth percent.)
Determine the Linear function whose graph passes through the points (6, -2) and has slope 3.
We have two distributions: A (M = 66.7, 95% CI = [60.3, 67.1]) / B (M = 71.3 95% CI = [67.7, 74.9]). Erin maintains that B is significantly larger than A. Provide your opinion on Erin’s argument and justify your opinion.
a) Statistics scores are normally distributed with the mean of 75 and standard deviation of 7. What is the probability that a student scores between 80 and 88
Let G be the center of gravity of triangle ABC. We draw through A a parallel to BC on which we take a point D so that DG⊥BG. If the area of the quadrilateral AGBD is equal to s, show that AC·BD≥2·s.
If the mean of the following numbers is 17, find the c value. Produce an algebraic solution. Guess and check is unacceptable. 12, 18, 21, c, 13
A 20-year old hopes to retire by age 65. To help with future expenses, they invest $6 500 today at an interest rate of 6.4% compounded annually. At age 65, what is the difference between the exact accumulated value and the approximate accumulated value (using the Rule of 72)?
Determine the general solution of the equation y′+y=e−x .
It costs a manufacturer $2,500 to purchase the tools to manufacture a certain homemade item. If the cost for materials and labor is 60¢ per item produced, and if the manufacturer can sell each item for 90¢, find how many items must he produce and sell to make a profit of $2000?
Write a linear equation in the slope-intercept form. Slope of the line is -1 and goes through (8,4)