To solve the differential equation X(x-1)y' + y(y-1) = 0 using separation of variables, we first rewrite it in the form:
X(x-1)y' + y(y-1) = 0
\frac{X(x-1)}{y(1-y)} dy = -dx
Now, we will separate variables and integrate:
\int \frac{X(x-1)}{y(1-y)} dy = \int -dx
\int \frac{1}{y(1-y)} dy = -\int \frac{1}{X(x-1)} dx
\int \left(\frac{1}{y} + \frac{1}{1-y}\right) dy = - \frac{1}{X} \int \frac{1}{x-1} dx
\int \left(\frac{1}{y} + \frac{1}{1-y}\right) dy = - \frac{1}{X} \ln|x-1| + C
Integrate with respect to y:
\ln|y| - \ln|1-y| = - \frac{1}{X} \ln|x-1| + C
Simplify and rewrite in terms of y:
\ln\left|\frac{y}{1-y}\right| = - \frac{1}{X} \ln|x-1| + C
Exponentiate both sides to eliminate the logarithms:
\left|\frac{y}{1-y}\right| = C (x-1)^{-X}
Solving for y:
\frac{y}{1-y} = \pm C (x-1)^{-X}
y = \frac{C(x-1)^{-X}}{1 \pm C(x-1)^{-X}}
Therefore, the solution to the differential equation is:
\boxed{y = \frac{C(x-1)^{-X}}{1 \pm C(x-1)^{-X}}}