Question

Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.

141

likes
705 views

Answer to a math question Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.

Expert avatar
Velda
4.5
110 Answers
1) La température initiale est la valeur de T lorsque t = 0. Pour la trouver, il suffit de brancher 0 pour t dans la fonction : T(0) = (20 \times 0 + 10)e^{ -0,5 \times 0} = 10e^0 = 10 La température initiale est donc de 10°C. 2) Pour montrer que T'(t) = (-10t + 15)e^(-0.5t), nous devons utiliser la règle du produit et la règle de la chaîne de différenciation. La règle du produit dit que si f et g sont deux fonctions, alors (f \times g)' = f' \times g + f \times g'. La règle de la chaîne dit que si h est une fonction de g , et g est une fonction de x, alors (h \circ g)'(x) = h'(g(x)) \times g'(x). Dans ce cas, on peut écrire T comme un produit de deux fonctions : T(t) = f(t) \times g(t)f(t) = 20t + 10 et g(t) = e^{- 0.5t} Ensuite, en utilisant la règle du produit, on obtient : T'(t) = f'(t) \times g(t) + f(t) \times g'(t) Pour trouver f'(t) et g'(t), nous devons utiliser la règle de la chaîne. Pour f'(t), on a : f'(t) = \frac{d}{dt}(20t + 10) = 20 + \frac{d}{dt}(10) = 20 + 0 = 20 Pour g'(t), on a : g'(t) = \frac{d}{dt}(e^{-0.5t}) = e^{-0.5t} \times \frac {d}{dt}(-0.5t) = e^{-0.5t} \times (-0.5) = -0.5e^{-0.5t} En branchant ces valeurs dans la règle du produit, nous obtenons : T'(t) = 20 \times e^{-0.5t} + (20t + 10) \times (-0.5e^{-0.5t}) En simplifiant, on obtient : T'(t) = (20 - 10t - 5)e^{-0.5t} En factorisant -5, nous obtenons : T'(t) = -5(2 - 2t - 1)e^{-0.5t} En simplifiant davantage, nous obtenons : T'(t) = (-10t + 15)e^{-0.5t} C'est la même chose que l'expression donnée, nous avons donc montré que T'(t) = ( -10t + 15)e^(-0,5t). 3) Pour étudier le signe de T'(t), nous devons trouver les valeurs de t qui rendent T'(t) égal à zéro ou indéfini. Puisque T'(t) est une fonction continue, elle n'est jamais indéfinie. Pour trouver les zéros de T'(t), nous devons résoudre l'équation : (-10t + 15)e^{-0,5t} = 0 Cette équation n'a qu'une seule solution, qui est t = 1,5. Cela signifie que T'(t) change de signe à t = 1,5. Pour trouver le signe de T'(t) sur chaque intervalle, on peut utiliser un point test. Par exemple, pour t < 1,5, nous pouvons utiliser t = 0 et le brancher sur T'(t) : T'(0) = (-10 \times 0 + 15)e^{-0,5 \times 0} = 15e^0 = 15 Puisque c'est positif, T'(t) est positif pour t < 1,5. De même, pour t > 1,5, nous pouvons utiliser t = 2 et le brancher sur T'(t) : T'(2) = (-10 \times 2 + 15)e^{-0,5 \times 2} = -5e^{-1} Puisque c'est négatif, T'(t) est négatif pour t > 1,5. On peut donc tracer le tableau des variations de T comme suit : | t | -∞ | 1.5 | +∞ | | T'(t) | + | 0 | - | | T(t) | ↗ | maximum | ↘ | 4) La température maximale atteinte par la réaction chimique est la valeur de T à t = 1,5, qui est le point où T'(t) passe du positif au négatif. Pour le trouver, il suffit de brancher 1.5 pour t dans la fonction : T(1.5) = (20 \times 1.5 + 10)e^{-0.5 \times 1.5} = 40e^{-0.75} À l'aide d'une calculatrice, nous obtenons : T(1,5) \environ 18,89 Par conséquent, la température maximale atteinte par la réaction chimique est de 18,89°C (à 10^-2^ près). 5) La température T redescend à sa valeur initiale lorsque T(t) = 10. Pour trouver l'instant où cela se produit, il faut résoudre l'équation : (20t + 10)e^{-0.5t} = 10 En divisant les deux côtés par 10, on obtient : (2t + 1)e^{-0.5t} = 1 En prenant le logarithme népérien des deux côtés, on obtient : \ln((2t + 1 )e^{-0.5t}) = \ln(1) En utilisant les propriétés des logarithmes, on obtient : \ln(2t + 1) - 0.5t = 0 Cette équation ne peut pas être résolue algébriquement, donc nous devons utiliser une méthode numérique, telle qu'une calculatrice graphique ou un solveur en ligne, pour trouver une solution approximative. Une de ces solutions est : t \environ 4,67 Par conséquent, la température T redescend à sa valeur initiale après 4,67 minutes. Pour convertir cela en minutes et secondes, il faut multiplier la partie décimale par 60 : 0,67 \times 60 \approx 40,3992 La température T redescend donc à sa valeur initiale après 4 minutes et 40 secondes.

Frequently asked questions (FAQs)
What is the domain of the trigonometric function f(x) = sin(x) + tan(x) in radians?
+
What is the length of the hypotenuse of a right triangle if the two other sides are 5 cm and 12 cm?
+
What is the length of the opposite side in a right triangle with a hypotenuse of 10 units and an angle of 30 degrees?
+
New questions in Mathematics
A particular employee arrives at work sometime between 8:00 a.m. and 8:50 a.m. Based on past experience the company has determined that the employee is equally likely to arrive at any time between 8:00 a.m. and 8:50 a.m. Find the probability that the employee will arrive between 8:05 a.m. and 8:40 a.m. Round your answer to four decimal places, if necessary.
Solution of the equation y&#39;&#39; - y&#39; -6y = 0
Use the digits of 1,9,2,3 to come up with all the numbers 98 and 95
3(2+x)-2(2x+6)=20-4x
Given that y = ×(2x + 1)*, show that dy = (2x + 1)" (Ax + B) dx where n, A and B are constants to be found.
3x+2/2x-1 + 3+x/2x-1 - 3x-2/2x-1
An integer is taken at random from the first 40 positive integers. What is the probability that the integer is divisible by 5 or 6?
Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?
2/3+5/6×1/2
By direct proof, how can you prove that “The sum of any three consecutive even integers is always a multiple of 6”.
prove that if n odd integer then n^2+5 is even
Prove that it is not possible to arrange the integers 1 to 240 in a table with 15 rows and 16 columns in such a way that the sum of the numbers in each of the columns is the same.
(1) July 1, 2008: Receives $25,000 from Quinn Zealick for 25,000 shares of the stock common face value $1 from the bookstore. (2) July 1, 2008: Obtains $30,000 loan from local bank for needs of working capital. The loan earns 6% interest per year. The loan is payable with interest on June 30, 2009. (3) July 1, 2008: Sign a three-year rental agreement at an annual rent of $20,000 Pay the first year's rent in advance. (4) July 1, 2008: Purchases shelves for $4,000 in cash. The shelves have an estimated useful life of five years and zero residual value. (5) July 1, 2008: Purchase computers for $10,000 in cash. The computers They have an estimated useful life of three years and $1,000 in residual value. (6) July 1, 2008: Makes guarantee deposits with various book distributors for a total of $8,000. Deposits are refundable on June 30, 2009 if the bookstore pays on time all amounts payable for books purchased from distributors between July 2008 and June 30, 2009. (7) During 2008: Purchases books on account from various distributors for a cost of $160,000. (8)During 2008: Sells books costing $140,000 to $172,800. Of the total sales, $24,600 corresponds to cash and $148,200 is on account. (9) During 2008: Returns unsold books and books ordered in error for a cost of $14,600. The company had not yet paid for these books. (10) During 2008: Collected $142,400 from sales on account. (11) During 2008: Pays employees salaries of $16,700. (12) During 2008: Pays $139,800 to book distributors of the amounts payable for purchases on account. (13) December 28, 2008: Receives customer advances of $850 due to order books special that the bookstore will order and expects to receive during 2009. (14) December 31, 2008: Record the corresponding amount of interest expense on the loan in (2) for 2008. (15) December 31, 2008: Record the corresponding amount of rental expense for 2008. (16) December 31, 2008: Record the corresponding amount of depreciation expense on the shelves in (4). (17) December 31, 2008: Record the corresponding amount of depreciation expense about computers in (5). (18) December 31, 2008: Record the corresponding amount of income tax expense. profits for 2008. The income tax rate is 40%. The taxes are paid on March 15, 2009. (1) March 15, 2009: Pays 2008 income tax. (2) June 30, 2009: Pay off the bank loan with interest. (3) July 1, 2009: Obtains a new bank loan for $75,000. He loan is payable on June 30, 2010, with 8% interest payable to the expiration. (4) July 1, 2009: Receives security deposits from book distributors. (5) July 1, 2009: Pay the rent corresponding to the period from July 1 2009 to June 30, 2010. (6) During 2009: Purchase books on account for a cost of $310,000. (7)During 2009: Sold books for a cost of $286,400 for $353,700. Of the total sales, $24,900 corresponds to cash, $850 corresponds to special orders received during December of 2008 and $327,950 are on account. (8) During 2009: Returns unsold books at a cost of $22,700. The company has not yet I had paid for these books. (9) During 2009: Collects $320,600 from sales to accounts. (10) During 2009: Pays employees compensation of $29,400. (11) During 2009: pays $281,100 to book distributors for book purchases from account. (12) December 31, 2009: Declares and pays a dividend of $4,000.
Use a pattern to prove that (-2)-(-3)=1
Find each coefficient described. Coefficient of u^2 in expansion of (u - 3)^3
cube root of 56
Evaluate ab+dc if a=56 , b=−34 , c=0.4 , and d=12 . Write in simplest form.
How many moles are there in 235 grams of potassium thiosulfate pentahydrate? K2S2O3*5(H2O)
16-(x²+x+2)²
A gas is leaking at 3.5ft3/min in a room of 2.9m by 6.9ft by 15.7m. How long would it take (in seconds) for 22% of the room to reach the LFL, if the gas has a LFL of 2.51%?