Question

Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.

141

likes
705 views

Answer to a math question Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.

Expert avatar
Velda
4.5
110 Answers
1) La température initiale est la valeur de T lorsque t = 0. Pour la trouver, il suffit de brancher 0 pour t dans la fonction : T(0) = (20 \times 0 + 10)e^{ -0,5 \times 0} = 10e^0 = 10 La température initiale est donc de 10°C. 2) Pour montrer que T'(t) = (-10t + 15)e^(-0.5t), nous devons utiliser la règle du produit et la règle de la chaîne de différenciation. La règle du produit dit que si f et g sont deux fonctions, alors (f \times g)' = f' \times g + f \times g'. La règle de la chaîne dit que si h est une fonction de g , et g est une fonction de x, alors (h \circ g)'(x) = h'(g(x)) \times g'(x). Dans ce cas, on peut écrire T comme un produit de deux fonctions : T(t) = f(t) \times g(t)f(t) = 20t + 10 et g(t) = e^{- 0.5t} Ensuite, en utilisant la règle du produit, on obtient : T'(t) = f'(t) \times g(t) + f(t) \times g'(t) Pour trouver f'(t) et g'(t), nous devons utiliser la règle de la chaîne. Pour f'(t), on a : f'(t) = \frac{d}{dt}(20t + 10) = 20 + \frac{d}{dt}(10) = 20 + 0 = 20 Pour g'(t), on a : g'(t) = \frac{d}{dt}(e^{-0.5t}) = e^{-0.5t} \times \frac {d}{dt}(-0.5t) = e^{-0.5t} \times (-0.5) = -0.5e^{-0.5t} En branchant ces valeurs dans la règle du produit, nous obtenons : T'(t) = 20 \times e^{-0.5t} + (20t + 10) \times (-0.5e^{-0.5t}) En simplifiant, on obtient : T'(t) = (20 - 10t - 5)e^{-0.5t} En factorisant -5, nous obtenons : T'(t) = -5(2 - 2t - 1)e^{-0.5t} En simplifiant davantage, nous obtenons : T'(t) = (-10t + 15)e^{-0.5t} C'est la même chose que l'expression donnée, nous avons donc montré que T'(t) = ( -10t + 15)e^(-0,5t). 3) Pour étudier le signe de T'(t), nous devons trouver les valeurs de t qui rendent T'(t) égal à zéro ou indéfini. Puisque T'(t) est une fonction continue, elle n'est jamais indéfinie. Pour trouver les zéros de T'(t), nous devons résoudre l'équation : (-10t + 15)e^{-0,5t} = 0 Cette équation n'a qu'une seule solution, qui est t = 1,5. Cela signifie que T'(t) change de signe à t = 1,5. Pour trouver le signe de T'(t) sur chaque intervalle, on peut utiliser un point test. Par exemple, pour t < 1,5, nous pouvons utiliser t = 0 et le brancher sur T'(t) : T'(0) = (-10 \times 0 + 15)e^{-0,5 \times 0} = 15e^0 = 15 Puisque c'est positif, T'(t) est positif pour t < 1,5. De même, pour t > 1,5, nous pouvons utiliser t = 2 et le brancher sur T'(t) : T'(2) = (-10 \times 2 + 15)e^{-0,5 \times 2} = -5e^{-1} Puisque c'est négatif, T'(t) est négatif pour t > 1,5. On peut donc tracer le tableau des variations de T comme suit : | t | -∞ | 1.5 | +∞ | | T'(t) | + | 0 | - | | T(t) | ↗ | maximum | ↘ | 4) La température maximale atteinte par la réaction chimique est la valeur de T à t = 1,5, qui est le point où T'(t) passe du positif au négatif. Pour le trouver, il suffit de brancher 1.5 pour t dans la fonction : T(1.5) = (20 \times 1.5 + 10)e^{-0.5 \times 1.5} = 40e^{-0.75} À l'aide d'une calculatrice, nous obtenons : T(1,5) \environ 18,89 Par conséquent, la température maximale atteinte par la réaction chimique est de 18,89°C (à 10^-2^ près). 5) La température T redescend à sa valeur initiale lorsque T(t) = 10. Pour trouver l'instant où cela se produit, il faut résoudre l'équation : (20t + 10)e^{-0.5t} = 10 En divisant les deux côtés par 10, on obtient : (2t + 1)e^{-0.5t} = 1 En prenant le logarithme népérien des deux côtés, on obtient : \ln((2t + 1 )e^{-0.5t}) = \ln(1) En utilisant les propriétés des logarithmes, on obtient : \ln(2t + 1) - 0.5t = 0 Cette équation ne peut pas être résolue algébriquement, donc nous devons utiliser une méthode numérique, telle qu'une calculatrice graphique ou un solveur en ligne, pour trouver une solution approximative. Une de ces solutions est : t \environ 4,67 Par conséquent, la température T redescend à sa valeur initiale après 4,67 minutes. Pour convertir cela en minutes et secondes, il faut multiplier la partie décimale par 60 : 0,67 \times 60 \approx 40,3992 La température T redescend donc à sa valeur initiale après 4 minutes et 40 secondes.

Frequently asked questions (FAQs)
What are the x-intercepts of the quadratic function represented by the equation y = x^2 - 4x + 3?
+
What is the common radian measure for a half circle?
+
What is the volume of a rectangular solid with length 10, width 5, and height 4?
+
New questions in Mathematics
Simplify the expression sin³(x)+cos³(x), using trigonometric functions
10! - 8! =
-6n+5=-13
11(4x-9)= -319
5(4x+3)=75
Given the vectors: a = (2m – 3n, 4n – m) and b = (2, -3), find the values of m and n that make: a = 5 b.
Express the following numbers in decimal system, where the subscript indicates the base: 110101 (SUBINDEX=2)
math question a bookstore announces a promotion valid for the same purchase as follows: buy a book and get 10% off the total purchase! buy two books and get 20% off your total purchase! buy three or more books and get 30% off your total purchase! Marcelo wanted to buy three books that cost 20.00 each without discount but he decided to buy two books in one day and another purchase with the third book the next day. If he had bought the three books at once he would have saved the following amount.
A food delivery company charges on average a delivery fee of $5 per order (including food and shipping) and has monthly fixed costs of $600. If the average cost of each meal delivered that is revenue for the company is $10 and the company has a monthly profit of $800, how many orders must they deliver per month?
(5-(4-3)*3)-(8+5))
1 plus 1
Suppose 50% of the doctors and hospital are surgeons if a sample of 576 doctors is selected what is the probability that the sample proportion of surgeons will be greater than 55% round your answer to four decimal places
-4y-6(2z-4y)-6
suppose random variable x follows poisson distribution with expected value 3. what is variance of x?
The following table shows the frequency of care for some animal species in a center specializing in veterinary dentistry. Species % Dog 52.8 Cat 19.2 Chinchilla 14.4 Marmoset 6.2 Consider that the center only serves 10 animals per week. For a given week, what is the probability that at least two are not dogs? ATTENTION: Provide the answer to exactly FOUR decimal places
The mass of 120 molecules of X2C4 is 9127.2 amu. Identify the unknown atom, X, by finding the atomic mass. The atomic mass of C is 12.01 amu/atom
Given the word WEIRD, determine a four-letter offspring that can be formed with the letters of the word written above
The average undergraduate cost per tuition, fees, room, and board for all institutions last year was $26,025. A random sample of 40 institutions of higher learning this year indicated that the mean tuition, fees, room, and board for the sample was $27,690, and the population standard deviation is $5492. At the 0.05 level of significance, is there sufficient evidence that the cost has increased? (Remember to follow the steps in hypothesis testing)
x(squared) -8x=0
Construct a set of six pieces of data with​ mean, median, and midrange of 67 and where no two pieces of data are the same.