Question

Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.

141

likes
705 views

Answer to a math question Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.

Expert avatar
Velda
4.5
109 Answers
1) La température initiale est la valeur de T lorsque t = 0. Pour la trouver, il suffit de brancher 0 pour t dans la fonction : T(0) = (20 \times 0 + 10)e^{ -0,5 \times 0} = 10e^0 = 10 La température initiale est donc de 10°C. 2) Pour montrer que T'(t) = (-10t + 15)e^(-0.5t), nous devons utiliser la règle du produit et la règle de la chaîne de différenciation. La règle du produit dit que si f et g sont deux fonctions, alors (f \times g)' = f' \times g + f \times g'. La règle de la chaîne dit que si h est une fonction de g , et g est une fonction de x, alors (h \circ g)'(x) = h'(g(x)) \times g'(x). Dans ce cas, on peut écrire T comme un produit de deux fonctions : T(t) = f(t) \times g(t)f(t) = 20t + 10 et g(t) = e^{- 0.5t} Ensuite, en utilisant la règle du produit, on obtient : T'(t) = f'(t) \times g(t) + f(t) \times g'(t) Pour trouver f'(t) et g'(t), nous devons utiliser la règle de la chaîne. Pour f'(t), on a : f'(t) = \frac{d}{dt}(20t + 10) = 20 + \frac{d}{dt}(10) = 20 + 0 = 20 Pour g'(t), on a : g'(t) = \frac{d}{dt}(e^{-0.5t}) = e^{-0.5t} \times \frac {d}{dt}(-0.5t) = e^{-0.5t} \times (-0.5) = -0.5e^{-0.5t} En branchant ces valeurs dans la règle du produit, nous obtenons : T'(t) = 20 \times e^{-0.5t} + (20t + 10) \times (-0.5e^{-0.5t}) En simplifiant, on obtient : T'(t) = (20 - 10t - 5)e^{-0.5t} En factorisant -5, nous obtenons : T'(t) = -5(2 - 2t - 1)e^{-0.5t} En simplifiant davantage, nous obtenons : T'(t) = (-10t + 15)e^{-0.5t} C'est la même chose que l'expression donnée, nous avons donc montré que T'(t) = ( -10t + 15)e^(-0,5t). 3) Pour étudier le signe de T'(t), nous devons trouver les valeurs de t qui rendent T'(t) égal à zéro ou indéfini. Puisque T'(t) est une fonction continue, elle n'est jamais indéfinie. Pour trouver les zéros de T'(t), nous devons résoudre l'équation : (-10t + 15)e^{-0,5t} = 0 Cette équation n'a qu'une seule solution, qui est t = 1,5. Cela signifie que T'(t) change de signe à t = 1,5. Pour trouver le signe de T'(t) sur chaque intervalle, on peut utiliser un point test. Par exemple, pour t < 1,5, nous pouvons utiliser t = 0 et le brancher sur T'(t) : T'(0) = (-10 \times 0 + 15)e^{-0,5 \times 0} = 15e^0 = 15 Puisque c'est positif, T'(t) est positif pour t < 1,5. De même, pour t > 1,5, nous pouvons utiliser t = 2 et le brancher sur T'(t) : T'(2) = (-10 \times 2 + 15)e^{-0,5 \times 2} = -5e^{-1} Puisque c'est négatif, T'(t) est négatif pour t > 1,5. On peut donc tracer le tableau des variations de T comme suit : | t | -∞ | 1.5 | +∞ | | T'(t) | + | 0 | - | | T(t) | ↗ | maximum | ↘ | 4) La température maximale atteinte par la réaction chimique est la valeur de T à t = 1,5, qui est le point où T'(t) passe du positif au négatif. Pour le trouver, il suffit de brancher 1.5 pour t dans la fonction : T(1.5) = (20 \times 1.5 + 10)e^{-0.5 \times 1.5} = 40e^{-0.75} À l'aide d'une calculatrice, nous obtenons : T(1,5) \environ 18,89 Par conséquent, la température maximale atteinte par la réaction chimique est de 18,89°C (à 10^-2^ près). 5) La température T redescend à sa valeur initiale lorsque T(t) = 10. Pour trouver l'instant où cela se produit, il faut résoudre l'équation : (20t + 10)e^{-0.5t} = 10 En divisant les deux côtés par 10, on obtient : (2t + 1)e^{-0.5t} = 1 En prenant le logarithme népérien des deux côtés, on obtient : \ln((2t + 1 )e^{-0.5t}) = \ln(1) En utilisant les propriétés des logarithmes, on obtient : \ln(2t + 1) - 0.5t = 0 Cette équation ne peut pas être résolue algébriquement, donc nous devons utiliser une méthode numérique, telle qu'une calculatrice graphique ou un solveur en ligne, pour trouver une solution approximative. Une de ces solutions est : t \environ 4,67 Par conséquent, la température T redescend à sa valeur initiale après 4,67 minutes. Pour convertir cela en minutes et secondes, il faut multiplier la partie décimale par 60 : 0,67 \times 60 \approx 40,3992 La température T redescend donc à sa valeur initiale après 4 minutes et 40 secondes.

Frequently asked questions (FAQs)
Question: What is the angle (in radians) formed by a line segment connecting two points on the circumference of a unit circle if the arc length between them is 0.5 units?
+
Math Question: Convert the number 0.000052 to scientific notation.
+
Math question: Solve the cubic equation 2x³ + 5x² - 3x - 7 = 0.
+
New questions in Mathematics
The patient is prescribed a course of 30 tablets. The tablets are prescribed “1 tablet twice a day”. How many days does a course of medication last?
A college believes that 22% of applicants to that school have parents who have remarried. How large a sample is needed to estimate the true proportion of students who have parents who have remarried to within 5 percentage points?
Jose bought 3/4 of oil and his sister bought 6/8, which of the two bought more oil?
A drawer contains three pairs of white socks, five pairs of black socks and two pairs of red socks. Caden randomly selects two pairs of socks on his way to the gym. What is the probability that both pairs of socks are black?
4x567
Suppose 56% of politicians are lawyers if a random sample of size 564 is selected, what is the probability that the proportion of politicians who are lawyers will differ from the total politicians proportions buy more than 4% round your answer to four decimal places
Equivalent expression of the sequence (3n-4)-(n-2)
The beta of a company is 1.51 while its financial leverage is 27%. What is then its unlevered beta if the corporate tax rate is 40%? (4 decimal places)
7/6-(-1/9)
How many anagrams of the word STROMEC there that do not contain STROM, MOST, MOC or CEST as a subword? By subword is meant anything that is created by omitting some letters - for example, the word EMROSCT contains both MOC and MOST as subwords.
Suppose that you use 4.29 g of Iron in the chemical reaction: 2Fe(s) + 3 Cu2 + (aq) 2Fe 3 + (aq) + 3Cu(s ) - . What is the theoretical yield of Cu (s), in grams?
Show this compound proposition to be true or false. Paris is the capital of England or Rome is the capital of Italy
The points (-5,-4) and (3,6) are the ends of the diameter of the circle calculate subequation
Jasminder has made 55% of the recipes in a particular cookbook. If there are 9 recipes that he has never made, how many recipes does the cookbook contain?
For what values of m is point P (m, 1 - 2m) in the 2⁰ quadrant?
Your grandfather has run a small high street pharmacy for 40 years. After much persuasion, he has agreed to open a digital store online. List 5 potential ways to improve sales and/or margins by having a digital pharmacy through the utilisation of historic or new sales data.
A block slides across the floor with a force of 20N, which has an angle of 30°. The mass of the block is 2kg and the coefficient of friction is 0.1. Calculate the value of all the forces involved in this system and finally the value of the acceleration.
To paint a 250 m wall, a number of workers were employed. If the wall were 30 m longer, 9 more workers would be needed. How many were employed at the beginning?
Today a father deposits $12,500 in a bank that pays 8% annual interest. Additionally, make annual contributions due of $2,000 annually for 3 years. The fund is for your son to receive an annuity and pay for his studies for 5 years. If the child starts college after 4 years, how much is the value of the annuity? solve how well it is for an exam
-1/3x+15=18