Question

Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.

141

likes
705 views

Answer to a math question Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.

Expert avatar
Velda
4.5
107 Answers
1) La température initiale est la valeur de T lorsque t = 0. Pour la trouver, il suffit de brancher 0 pour t dans la fonction : T(0) = (20 \times 0 + 10)e^{ -0,5 \times 0} = 10e^0 = 10 La température initiale est donc de 10°C. 2) Pour montrer que T'(t) = (-10t + 15)e^(-0.5t), nous devons utiliser la règle du produit et la règle de la chaîne de différenciation. La règle du produit dit que si f et g sont deux fonctions, alors (f \times g)' = f' \times g + f \times g'. La règle de la chaîne dit que si h est une fonction de g , et g est une fonction de x, alors (h \circ g)'(x) = h'(g(x)) \times g'(x). Dans ce cas, on peut écrire T comme un produit de deux fonctions : T(t) = f(t) \times g(t)f(t) = 20t + 10 et g(t) = e^{- 0.5t} Ensuite, en utilisant la règle du produit, on obtient : T'(t) = f'(t) \times g(t) + f(t) \times g'(t) Pour trouver f'(t) et g'(t), nous devons utiliser la règle de la chaîne. Pour f'(t), on a : f'(t) = \frac{d}{dt}(20t + 10) = 20 + \frac{d}{dt}(10) = 20 + 0 = 20 Pour g'(t), on a : g'(t) = \frac{d}{dt}(e^{-0.5t}) = e^{-0.5t} \times \frac {d}{dt}(-0.5t) = e^{-0.5t} \times (-0.5) = -0.5e^{-0.5t} En branchant ces valeurs dans la règle du produit, nous obtenons : T'(t) = 20 \times e^{-0.5t} + (20t + 10) \times (-0.5e^{-0.5t}) En simplifiant, on obtient : T'(t) = (20 - 10t - 5)e^{-0.5t} En factorisant -5, nous obtenons : T'(t) = -5(2 - 2t - 1)e^{-0.5t} En simplifiant davantage, nous obtenons : T'(t) = (-10t + 15)e^{-0.5t} C'est la même chose que l'expression donnée, nous avons donc montré que T'(t) = ( -10t + 15)e^(-0,5t). 3) Pour étudier le signe de T'(t), nous devons trouver les valeurs de t qui rendent T'(t) égal à zéro ou indéfini. Puisque T'(t) est une fonction continue, elle n'est jamais indéfinie. Pour trouver les zéros de T'(t), nous devons résoudre l'équation : (-10t + 15)e^{-0,5t} = 0 Cette équation n'a qu'une seule solution, qui est t = 1,5. Cela signifie que T'(t) change de signe à t = 1,5. Pour trouver le signe de T'(t) sur chaque intervalle, on peut utiliser un point test. Par exemple, pour t < 1,5, nous pouvons utiliser t = 0 et le brancher sur T'(t) : T'(0) = (-10 \times 0 + 15)e^{-0,5 \times 0} = 15e^0 = 15 Puisque c'est positif, T'(t) est positif pour t < 1,5. De même, pour t > 1,5, nous pouvons utiliser t = 2 et le brancher sur T'(t) : T'(2) = (-10 \times 2 + 15)e^{-0,5 \times 2} = -5e^{-1} Puisque c'est négatif, T'(t) est négatif pour t > 1,5. On peut donc tracer le tableau des variations de T comme suit : | t | -∞ | 1.5 | +∞ | | T'(t) | + | 0 | - | | T(t) | ↗ | maximum | ↘ | 4) La température maximale atteinte par la réaction chimique est la valeur de T à t = 1,5, qui est le point où T'(t) passe du positif au négatif. Pour le trouver, il suffit de brancher 1.5 pour t dans la fonction : T(1.5) = (20 \times 1.5 + 10)e^{-0.5 \times 1.5} = 40e^{-0.75} À l'aide d'une calculatrice, nous obtenons : T(1,5) \environ 18,89 Par conséquent, la température maximale atteinte par la réaction chimique est de 18,89°C (à 10^-2^ près). 5) La température T redescend à sa valeur initiale lorsque T(t) = 10. Pour trouver l'instant où cela se produit, il faut résoudre l'équation : (20t + 10)e^{-0.5t} = 10 En divisant les deux côtés par 10, on obtient : (2t + 1)e^{-0.5t} = 1 En prenant le logarithme népérien des deux côtés, on obtient : \ln((2t + 1 )e^{-0.5t}) = \ln(1) En utilisant les propriétés des logarithmes, on obtient : \ln(2t + 1) - 0.5t = 0 Cette équation ne peut pas être résolue algébriquement, donc nous devons utiliser une méthode numérique, telle qu'une calculatrice graphique ou un solveur en ligne, pour trouver une solution approximative. Une de ces solutions est : t \environ 4,67 Par conséquent, la température T redescend à sa valeur initiale après 4,67 minutes. Pour convertir cela en minutes et secondes, il faut multiplier la partie décimale par 60 : 0,67 \times 60 \approx 40,3992 La température T redescend donc à sa valeur initiale après 4 minutes et 40 secondes.

Frequently asked questions (FAQs)
What is the radian measure of an angle that subtends an arc of length 5 units in a circle with radius 2 units?
+
A function f(x) takes the absolute value of x, adds 3, and multiplies the result by 2. What is f(6)?
+
Question: What is the result of factoring the mixed number 3 1/2, adding it to the sum of factoring the real number 150, and subtracting the factored form of the real number 25?
+
New questions in Mathematics
5(4x+3)=75
(x^2+3x)/(x^2-9)=
How do you think the company has increased or decreased its income?
4.2x10^_6 convert to standard notation
1 plus 1
Determine the absolute extrema of the function 𝑓(𝑥)=𝑥3−18𝑥2 96𝑥 , on the interval [1,10]
The actual length of an object is 1.3 m . If the blueprint uses a scale of 1 : 12 , what is the length of the line on the drawing?
2x2 and how much?
During a fishing trip Alex notices that the height h of the tide (in metres) is given by h=1−(1/2)*cos(πt/6) where t is measued in hours from the start of the trip. (a) Enter the exact value of h at the start of the trip in the box below.
Exercise 1 An ejidal association wishes to determine the distribution for the three different crops that it can plant for the next season on its available 900 hectares. Information on the total available and how many resources are required for each hectare of cultivation is shown in the following tables: Total available resource Water 15,000 m3 Fertilizer 5,000 kg Labor 125 day laborers Requirements per cultivated hectare Corn Soybeans Wheat Water 15 25 20 Fertilizer 5 8 7 Labor** 1/8 1/5 1/4 *The data in fraction means that with one day laborer it will be possible to care for 8, 5 and 4 hectares respectively. * Sales of crops 1 and 3, according to information from the Department of Agriculture, are guaranteed and exceed the capacity of the cooperative. However, soybeans must be limited to a maximum of 150 hectares. On the other hand, the profits for each hectare of crop obtained are estimated at: $7,500 for corn, $8,500 for soybeans and $8,000 for wheat. The objectives are to determine: • How many hectares of each crop must be allocated so that the profit is maximum. R= • The estimated profits for the ejidal cooperative in the next growing season. R=
The simple average of 15 , 30 , 40 , and 45 is
What is 75 percent less than 60
The mass of 120 molecules of X2C4 is 9127.2 amu. Identify the unknown atom, X, by finding the atomic mass. The atomic mass of C is 12.01 amu/atom
A diamond ring was reduced from $999.99 to $689.99. Find the percent reduction in the price. Round the answer to the nearest tenth of a percent, if necessary.
We plan to test whether the mean mRNA expression level differs between two strains of yeast, for each of 8,000 genes. We will measure the expression levels of each gene, in n samples of strain 1 and m samples of strain 2. We plan to compute a P-value for each gene, using an unpaired two-sample t-test for each gene (the particular type of test does not matter). a) What are the null hypotheses in these tests (in words)? [2] b) If, in fact, the two strains are identical, how many of these tests do we expect to produce a P-value exceeding 1/4? [2]
Determine the kinetic energy of a baseball whose mass is 100 grams and has a speed of 30 m/s.
2 - 6x = -16x + 28
To paint a 250 m wall, a number of workers were employed. If the wall were 30 m longer, 9 more workers would be needed. How many were employed at the beginning?
calculate the product of 4 and 1/8
9n + 7(-8 + 4k) use k=2 and n=3