Question

Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.

141

likes
705 views

Answer to a math question Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.

Expert avatar
Velda
4.5
110 Answers
1) La température initiale est la valeur de T lorsque t = 0. Pour la trouver, il suffit de brancher 0 pour t dans la fonction : T(0) = (20 \times 0 + 10)e^{ -0,5 \times 0} = 10e^0 = 10 La température initiale est donc de 10°C. 2) Pour montrer que T'(t) = (-10t + 15)e^(-0.5t), nous devons utiliser la règle du produit et la règle de la chaîne de différenciation. La règle du produit dit que si f et g sont deux fonctions, alors (f \times g)' = f' \times g + f \times g'. La règle de la chaîne dit que si h est une fonction de g , et g est une fonction de x, alors (h \circ g)'(x) = h'(g(x)) \times g'(x). Dans ce cas, on peut écrire T comme un produit de deux fonctions : T(t) = f(t) \times g(t)f(t) = 20t + 10 et g(t) = e^{- 0.5t} Ensuite, en utilisant la règle du produit, on obtient : T'(t) = f'(t) \times g(t) + f(t) \times g'(t) Pour trouver f'(t) et g'(t), nous devons utiliser la règle de la chaîne. Pour f'(t), on a : f'(t) = \frac{d}{dt}(20t + 10) = 20 + \frac{d}{dt}(10) = 20 + 0 = 20 Pour g'(t), on a : g'(t) = \frac{d}{dt}(e^{-0.5t}) = e^{-0.5t} \times \frac {d}{dt}(-0.5t) = e^{-0.5t} \times (-0.5) = -0.5e^{-0.5t} En branchant ces valeurs dans la règle du produit, nous obtenons : T'(t) = 20 \times e^{-0.5t} + (20t + 10) \times (-0.5e^{-0.5t}) En simplifiant, on obtient : T'(t) = (20 - 10t - 5)e^{-0.5t} En factorisant -5, nous obtenons : T'(t) = -5(2 - 2t - 1)e^{-0.5t} En simplifiant davantage, nous obtenons : T'(t) = (-10t + 15)e^{-0.5t} C'est la même chose que l'expression donnée, nous avons donc montré que T'(t) = ( -10t + 15)e^(-0,5t). 3) Pour étudier le signe de T'(t), nous devons trouver les valeurs de t qui rendent T'(t) égal à zéro ou indéfini. Puisque T'(t) est une fonction continue, elle n'est jamais indéfinie. Pour trouver les zéros de T'(t), nous devons résoudre l'équation : (-10t + 15)e^{-0,5t} = 0 Cette équation n'a qu'une seule solution, qui est t = 1,5. Cela signifie que T'(t) change de signe à t = 1,5. Pour trouver le signe de T'(t) sur chaque intervalle, on peut utiliser un point test. Par exemple, pour t < 1,5, nous pouvons utiliser t = 0 et le brancher sur T'(t) : T'(0) = (-10 \times 0 + 15)e^{-0,5 \times 0} = 15e^0 = 15 Puisque c'est positif, T'(t) est positif pour t < 1,5. De même, pour t > 1,5, nous pouvons utiliser t = 2 et le brancher sur T'(t) : T'(2) = (-10 \times 2 + 15)e^{-0,5 \times 2} = -5e^{-1} Puisque c'est négatif, T'(t) est négatif pour t > 1,5. On peut donc tracer le tableau des variations de T comme suit : | t | -∞ | 1.5 | +∞ | | T'(t) | + | 0 | - | | T(t) | ↗ | maximum | ↘ | 4) La température maximale atteinte par la réaction chimique est la valeur de T à t = 1,5, qui est le point où T'(t) passe du positif au négatif. Pour le trouver, il suffit de brancher 1.5 pour t dans la fonction : T(1.5) = (20 \times 1.5 + 10)e^{-0.5 \times 1.5} = 40e^{-0.75} À l'aide d'une calculatrice, nous obtenons : T(1,5) \environ 18,89 Par conséquent, la température maximale atteinte par la réaction chimique est de 18,89°C (à 10^-2^ près). 5) La température T redescend à sa valeur initiale lorsque T(t) = 10. Pour trouver l'instant où cela se produit, il faut résoudre l'équation : (20t + 10)e^{-0.5t} = 10 En divisant les deux côtés par 10, on obtient : (2t + 1)e^{-0.5t} = 1 En prenant le logarithme népérien des deux côtés, on obtient : \ln((2t + 1 )e^{-0.5t}) = \ln(1) En utilisant les propriétés des logarithmes, on obtient : \ln(2t + 1) - 0.5t = 0 Cette équation ne peut pas être résolue algébriquement, donc nous devons utiliser une méthode numérique, telle qu'une calculatrice graphique ou un solveur en ligne, pour trouver une solution approximative. Une de ces solutions est : t \environ 4,67 Par conséquent, la température T redescend à sa valeur initiale après 4,67 minutes. Pour convertir cela en minutes et secondes, il faut multiplier la partie décimale par 60 : 0,67 \times 60 \approx 40,3992 La température T redescend donc à sa valeur initiale après 4 minutes et 40 secondes.

Frequently asked questions (FAQs)
What is 2.5 radians converted to degrees?
+
What is the mode of the following data set: 4, 7, 9, 5, 5?
+
Math question: Find the absolute extrema of the function f(x) = sin(x) on the interval [0, π/2].
+
New questions in Mathematics
A normal random variable x has a mean of 50 and a standard deviation of 10. Would it be unusual to see the value x = 0? Explain your answer.
given cos26=k find cos13
How many kilometers does a person travel in 45 minutes if they move at a rate of 8.3 m/s?
The ratio of tomatoes to red apples is 2:5. If there are 20 tomaoes in the garden, how many red apples are there?
9b^2-6b-5
2/3+5/6×1/2
calculate the normal vector of line y = -0.75x + 3
By direct proof, how can you prove that “The sum of any three consecutive even integers is always a multiple of 6”.
78 percent to a decimal
You are the newly appointed transport manager for Super Trucking (Pty) Ltd, which operates as a logistics service provider for various industries throughout southern Africa. One of these vehicles is a 4x2 Rigid Truck and drawbar trailer that covers 48,000 km per year. Use the assumptions below to answer the following questions (show all calculations): Overheads R 176,200 Cost of capital (% of purchase price per annum) 11.25% Annual License Fees—Truck R 16,100 Driver Monthly cost R 18,700 Assistant Monthly cost R 10,500 Purchase price: - Truck R 1,130,000 Depreciation: straight line method Truck residual value 25% Truck economic life (years) 5 Purchase price: Trailer R 370,000 Tyre usage and cost (c/km) 127 Trailer residual value 0% Trailer economic life (years) 10 Annual License Fees—Trailer R 7,700 Fuel consumption (liters/100km) 22 Fuel price (c/liter) 2053 Insurance (% of cost price) 7.5% Maintenance cost (c/km) 105 Distance travelled per year (km) 48000 Truck (tyres) 6 Trailer (tyres) 8 New tyre price (each) R 13,400 Lubricants (% of fuel cost) 2.5% Working weeks 50 Working days 5 days / week Profit margin 25% VAT 15% Q1. Calculate the annual total vehicle costs (TVC)
Determine the increase of the function y=4x−5 when the argument changes from x1=2 to x2=3
ind the z-score for which 72% of the distribution's area lies between -z and z. -1.7417, 1.7417 -1.1538, 1.1538 -1.0803, 1.0803 -2.826, 2.826
List the remaining zeros of the polynomial with the given zeros Zeros are: 2, 3i, and 3 + i
Translate to an equation and solve. Let x be the unknown number: What number is 52% of 81.
Find the area of a triangle ABC when m<C = 14 degrees, a = 5.7 miles, and b = 9.3 miles.
Salut👋🏻 Appuie sur "Créer une nouvelle tâche" pour envoyer ton problème de mathématiques. Un de nos experts commencera à travailler dessus immédiatement !
1. The cost to transport 250 packages of cement 120 kilometers is $600. What will be the cost to transport 500 packages 300 kilometers?
4m - 3t + 7 = 16
Sodium 38.15 38.78 38.5 38.65 38.79 38.89 38.57 38.59 38.59 38.8 38.63 38.43 38.56 38.46 38.79 38.42 38.74 39.12 38.5 38.42 38.57 38.37 38.71 38.71 38.4 38.56 38.39 38.34 39.04 38.8 A supplier of bottled mineral water claims that his supply of water has an average sodium content of 36.6 mg/L. The boxplot below is of the sodium contents levels taken from a random sample of 30 bottles. With this data investigate the claim using SPSS to apply the appropriate test. Download the data and transfer it into SPSS. Check that your data transfer has been successful by obtaining the Std. Error of the mean for your data which should appear in SPSS output as 0.03900.. If you do not have this exact value, then you may have not transferred your data from the Excel file to SPSS correctly. Do not continue with the test until your value agrees as otherwise you may not have correct answers. Unless otherwise directed you should report all numeric values to the accuracy displayed in the SPSS output that is supplied when your data has been transferred correctly. In the following questions, all statistical tests should be carried out at the 0.05 significance level. Sample mean and median Complete the following concerning the mean and median of the data. mean =  mg/L 95% CI:  to  mg/L Based upon the 95% confidence interval, is it plausible that the average sodium content is 36.9 mg/L?      median:  mg/L The median value is      36.9 mg/L. Skewness Complete the following concerning the skewness of the data. Skewness statistic =        Std. Error =  The absolute value of the skewness statistic     less than 2 x Std. Error Therefore the data can be considered to come from a population that is      . Normality test Complete the following summary concerning the formal testing of the normality of the data. H0: The data come from a population that     normal H1: The data come from a population that     normal Application of the Shapiro-Wilk test indicated that the normality assumption     reasonable for sodium content (S-W(  )=  , p=   ). Main test Using the guidelines you have been taught that consider sample size, skewness and normality, choose and report the appropriate main test from the following ( Appropriate ONE ) You have selected that you wish to report the one-sample t-test. H0: The mean sodium content     equal to 36.9 mg/L H1: The mean sodium content     equal to 36.9 mg/L Application of the one-sample t-test indicated that the mean is      36.9 mg/L (t(  ) =  , p =   ). You have selected that you wish to report the Wilcoxon signed rank test. H0: The median sodium content     equal to 36.9 mg/L H1: The median sodium content     equal to 36.9 mg/L Application of the Wilcoxon signed rank test indicated that the median is      36.9 mg/L (z =  , N =  , p =   ).
Kayla started a book club at her school. The number of girls in the book club was one more than twice the number of boys. If there are 15 girls in the book club, how many boys are in the club?