1,344 towards social security out of their gross wages.",829,166,"employees-in-2012-paid-4-2-of-their-gross-wages-towards-social-security-while-employers-paid-another-6-2-how-much-will-someone-earning-32-000-a-year-pay-towards-social-security-out-of-their-gross-w",{"id":55,"category":47,"text_question":56,"photo_question":49,"text_answer":57,"step_text_answer":8,"step_photo_answer":8,"views":58,"likes":59,"slug":60},537924,"Write and solve an equation:\nFind a number such that 5 less than the opposite of the number is 3 times the sum of the number and -7","1. Write the equation: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-x - 5 = 3x7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Expand the right side: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-x - 5 = 3x - 21\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Add \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> to both sides: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-5 = 4x - 21\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Add 21 to both sides:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>16 = 4x\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Divide by 4:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 4\u003C/math-field>\u003C/math-field>",1033,207,"write-and-solve-an-equation-find-a-number-such-that-5-less-than-the-opposite-of-the-number-is-3-times-the-sum-of-the-number-and-7",{"id":62,"category":47,"text_question":63,"photo_question":49,"text_answer":64,"step_text_answer":8,"step_photo_answer":8,"views":65,"likes":66,"slug":67},537879,"put brackets, addition, subtraction, multiplication or division signs to make the numerical expression correct: 6 6 6 6 6=22","Solution:\u003Cbr />\n1. We start with five 6s: \u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6 \\ 6 \\ 6 \\ 6 \\ 6\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Choose appropriate operations and brackets:\u003Cbr />\n- Use addition +, subtraction , multiplication , and division /.\u003Cbr />\n- Insert operations between 6s and appropriate brackets to reach the result of 22.\u003Cbr />\n\u003Cbr />\n3. Apply the chosen operations and brackets to evaluate:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6/6 + 6 + 6 + 6 = 22\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Check the calculation:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>6 / 6 = 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1 + 6 + 6 + 6 = 22\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. We have achieved the target result of 22.",516,103,"put-brackets-addition-subtraction-multiplication-or-division-signs-to-make-the-numerical-expression-correct-6-6-6-6-6-22",{"id":69,"category":47,"text_question":70,"photo_question":49,"text_answer":71,"step_text_answer":8,"step_photo_answer":8,"views":72,"likes":73,"slug":74},537747,"Use the definition of differentiation to differentiate \n1. fx=2x+3\n2. fx=2x^2+2x-1","1. Given \\( f(x) = 2x + 3 \\)\u003Cbr />\n - Use the limit definition of a derivative: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> f'(x) = \\lim_{h \\to 0} \\frac{2h}{h} \u003C/math-field>\u003C/math-field>\u003Cbr />\n - Simplify: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> f'(x) = 2 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n Answer: \\( f'(x) = 2 \\)\u003Cbr />\n\u003Cbr />\n2. Given \\( f(x) = 2x^2 + 2x - 1 \\)\u003Cbr />\n - Use the limit definition of a derivative: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> f'(x) = \\lim_{h \\to 0} \\frac{4xh + 2h^2 + 2h}{h} \u003C/math-field>\u003C/math-field>\u003Cbr />\n - Simplify: \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> f'(x) = \\lim_{h \\to 0} (4x + 2h + 2) \u003C/math-field>\u003C/math-field>\u003Cbr />\n - Substitute \\( h = 0 \\): \u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> f'(x) = 4x + 2 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n Answer: \\( f'(x) = 4x + 2 \\)",994,199,"use-the-definition-of-differentiation-to-differentiate-1-f-x-2x-3-2-f-x-2x-2-2x-1",{"id":76,"category":47,"text_question":77,"photo_question":49,"text_answer":78,"step_text_answer":8,"step_photo_answer":8,"views":79,"likes":80,"slug":81},537736,"Suppose x is an integer. Consider the proposition, “x is an even integer if and only if 5x+3 is an odd integer.” Express this proposition as a conjunction of two distinct conditional statements.","1. Identify the implications of the statement \"x is an even integer if and only if 5x+3 is an odd integer.\" This is a biconditional statement, which means it can be expressed as two conditional statements (implications).\u003Cbr />\n\u003Cbr />\n2. Break down the biconditional statement into its two conditional components:\u003Cbr />\n \u003Cbr />\n - Conditional 1: If \\( x \\) is an even integer (hypothesis), then \\( 5x+3 \\) is an odd integer (conclusion).\u003Cbr />\n \u003Cbr />\n - Conditional 2: If \\( 5x+3 \\) is an odd integer (hypothesis), then \\( x \\) is an even integer (conclusion).\u003Cbr />\n\u003Cbr />\n3. Combine the two conditionals with \"and\" to form the conjunction of the conditionals:\u003Cbr />\n \u003Cbr />\n - \"If \\( x \\) is an even integer, then \\( 5x+3 \\) is an odd integer\" \\( \\land \\) \"If \\( 5x+3 \\) is an odd integer, then \\( x \\) is an even integer.\"\u003Cbr />\n\u003Cbr />\n**Answer:**\u003Cbr />\n\u003Cbr />\nIf \\( x \\) is an even integer, then \\( 5x+3 \\) is an odd integer.\u003Cbr />\n\u003Cbr />\nIf \\( 5x+3 \\) is an odd integer, then \\( x \\) is an even integer.",870,174,"suppose-x-is-an-integer-consider-the-proposition-x-is-an-even-integer-if-and-only-if-5x-3-is-an-odd-integer-express-this-proposition-as-a-conjunction-of-two-distinct-conditional-statements",{"id":83,"category":47,"text_question":84,"photo_question":49,"text_answer":85,"step_text_answer":8,"step_photo_answer":8,"views":86,"likes":87,"slug":88},537734,"Solve -2y + 6y - x - 4 = 0 for y","Solution:\u003Cbr />\n1. Given equation:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2y + 6y - x - 4 = 0\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Simplify the equation by combining like terms:\u003Cbr />\n * Combine terms with \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y\u003C/math-field>\u003C/math-field>: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2y + 6y = 4y\u003C/math-field>\u003C/math-field>\u003Cbr />\n * Equation becomes: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4y - x - 4 = 0\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y\u003C/math-field>\u003C/math-field>:\u003Cbr />\n * Add \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> and \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> to both sides: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4y = x + 4\u003C/math-field>\u003C/math-field>\u003Cbr />\n * Divide both sides by \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> to solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y\u003C/math-field>\u003C/math-field>: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = \\frac{x + 4}{4}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nThe equation solved for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = \\frac{x + 4}{4}\u003C/math-field>\u003C/math-field>.",590,118,"solve-2y-6y-x-4-0-for-y",{"id":90,"category":47,"text_question":91,"photo_question":49,"text_answer":92,"step_text_answer":8,"step_photo_answer":8,"views":93,"likes":94,"slug":95},537723,"Guido has a quarter of Andrés's money and three times as much as David's money. How much money does each have if the sum of all the amounts is $48,000?","1. Declare the variable for Andrés's money: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x \u003C/math-field>\u003C/math-field>\u003Cbr />\n2. Determine Guido's money which is a quarter of Andrés's: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> y = \\frac{x}{4} \u003C/math-field>\u003C/math-field>\u003Cbr />\n3. Determine David's money, which is a third of Guido's: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> z = \\frac{y}{3} = \\frac{\\frac{x}{4}}{3} = \\frac{x}{12} \u003C/math-field>\u003C/math-field>\u003Cbr />\n4. Write the equation that sums their total money: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x + \\frac{x}{4} + \\frac{x}{12} = 48000 \u003C/math-field>\u003C/math-field>\u003Cbr />\n5. Get a common denominator for the fractions: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x + \\frac{3x}{12} + \\frac{x}{12} = 48000 \u003C/math-field>\u003C/math-field>\u003Cbr />\n6. Combine the fractions: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x + \\frac{4x}{12} = 48000 \u003C/math-field>\u003C/math-field>\u003Cbr />\n7. Simplify the expression: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x + \\frac{x}{3} = 48000 \u003C/math-field>\u003C/math-field>\u003Cbr />\n8. Eliminate the fraction by multiplying by 3: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3x + x = 144000 \u003C/math-field>\u003C/math-field>\u003Cbr />\n9. Simplify further: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 4x = 144000 \u003C/math-field>\u003C/math-field>\u003Cbr />\n10. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x \u003C/math-field>\u003C/math-field> by dividing by 4: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 36000 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nFinal amounts:\u003Cbr />\n- Andrés: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 36000 \u003C/math-field>\u003C/math-field>\u003Cbr />\n- Guido: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> y = \\frac{36000}{4} = 9000 \u003C/math-field>\u003C/math-field>\u003Cbr />\n- David: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> z = \\frac{9000}{3} = 3000 \u003C/math-field>\u003C/math-field>",916,183,"guido-has-a-quarter-of-andres-s-money-and-three-times-as-much-as-david-s-money-how-much-money-does-each-have-if-the-sum-of-all-the-amounts-is-48-000",{"id":97,"category":47,"text_question":98,"photo_question":49,"text_answer":99,"step_text_answer":8,"step_photo_answer":8,"views":100,"likes":87,"slug":101},537715,"3a2-ab if a =-4 and b =3","1. Substitute \\( a = -4 \\) and \\( b = 3 \\) into the expression \\( 3a^2 - ab \\).\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3 \\times (-4)^2 - (-4) \\times 3\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Calculate \\((-4)^2\\).\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(-4)^2 = 16\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Multiply by 3.\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3 \\times 16 = 48\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Calculate \\(- (-4) \\times 3\\).\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>- (-4) \\times 3 = 12\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Subtract the result of step 4 from the result of step 3.\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>48 + 12 = 60\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Answer: 60",589,"3a2-ab-if-a-4-and-b-3",{"id":103,"category":47,"text_question":104,"photo_question":49,"text_answer":105,"step_text_answer":8,"step_photo_answer":8,"views":106,"likes":107,"slug":108},537607,"1/12of 1=","Solution:\u003Cbr />\n1. To find \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\frac{1}{12}\u003C/math-field>\u003C/math-field> of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1\u003C/math-field>\u003C/math-field>, multiply \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\frac{1}{12}\u003C/math-field>\u003C/math-field> by \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1\u003C/math-field>\u003C/math-field>.\u003Cbr />\n2. Calculation: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\frac{1}{12} \\times 1 = \\frac{1}{12}\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\nTherefore, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\frac{1}{12}\u003C/math-field>\u003C/math-field> of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\frac{1}{12}\u003C/math-field>\u003C/math-field>.",888,178,"1-12of-1",{"id":110,"category":47,"text_question":111,"photo_question":49,"text_answer":112,"step_text_answer":8,"step_photo_answer":8,"views":113,"likes":114,"slug":115},537561,"Let G be group\n If H is a subgroup of G, show that for all g∈G the set g*H*g^(-1)={g*H*g^(-1) ├|h∈H┤} is a subgroup of G\n Show that if H is finite, then g*H*g^(-1) is also finite and has the same number of elements as H.","1. **Mostrar que $gHg^{-1}$ es un subgrupo de $G$:**\u003Cbr />\n\u003Cbr />\n - **Cerradura:** Para $a, b \\in gHg^{-1}$, $a = gh_1g^{-1}$ y $b = gh_2g^{-1}$, donde $h_1, h_2 \\in H$. Entonces, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>ab = (gh_1g^{-1})(gh_2g^{-1}) = gh_1(h_2g^{-1}) = g(h_1h_2)g^{-1}.\u003C/math-field>\u003C/math-field>\u003Cbr />\n Como $H$ es subgrupo, $h_1h_2 \\in H$, entonces $ab \\in gHg^{-1}$.\u003Cbr />\n \u003Cbr />\n - **Identidad:** Como $e \\in H$ (elemento identidad de $H$) y $ge(g^{-1}) = g g^{-1} = e \\in gHg^{-1}$, la identidad de $G$ también está en $gHg^{-1}$.\u003Cbr />\n\u003Cbr />\n - **Inverso:** Para $a \\in gHg^{-1}$, $a = ghg^{-1}$, donde $h \\in H$. El inverso de $a$ es \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a^{-1} = (ghg^{-1})^{-1} = g^{-1}(h^{-1})g.\u003C/math-field>\u003C/math-field>\u003Cbr />\n Como $h \\in H$ implica $h^{-1} \\in H$, entonces $a^{-1} = g(h^{-1})g^{-1} \\in gHg^{-1}$.\u003Cbr />\n \u003Cbr />\n2. **Mostrar que $\\#(gHg^{-1}) = \\#H$ si $H$ es finito:**\u003Cbr />\n\u003Cbr />\n - Dado que la función $f: H \\to gHg^{-1}$ tal que $f(h) = ghg^{-1}$ es un bijectivo, el conjunto $gHg^{-1}$ tiene la misma cardinalidad que $H$. \u003Cbr />\n\u003Cbr />\n Entonces, $gHg^{-1}$ es un subgrupo de $G$. Y además, si $H$ es finito, $gHg^{-1}$ es finito y tiene el mismo número de elementos que $H$. Así, $\\#(gHg^{-1}) = \\#H$.",1151,230,"let-g-be-group-if-h-is-a-subgroup-of-g-show-that-for-all-g-g-the-set-g-h-g-1-g-h-g-1-h-h-is-a-subgroup-of-g-show-that-if-h-is-finite-then-g-h-g-1-is-also-finite-and-has-the-same-numb",{"first":6,"last":117,"prev":8,"next":10},12,{"current_page":6,"from":6,"last_page":117,"links":119,"path":153,"per_page":144,"to":144,"total":42},[120,123,126,128,130,132,134,137,140,143,146,149,151],{"url":6,"label":121,"active":122},"1",true,{"url":10,"label":124,"active":125},"2",false,{"url":13,"label":127,"active":125},"3",{"url":16,"label":129,"active":125},"4",{"url":19,"label":131,"active":125},"5",{"url":22,"label":133,"active":125},"6",{"url":135,"label":136,"active":125},7,"7",{"url":138,"label":139,"active":125},8,"8",{"url":141,"label":142,"active":125},9,"9",{"url":144,"label":145,"active":125},10,"10",{"url":147,"label":148,"active":125},11,"11",{"url":117,"label":150,"active":125},"12",{"url":10,"label":152,"active":125},"Next »","https://api.math-master.org/api/question/expert",{"$sicons":155},{"bxl:facebook-circle":156,"bxl:instagram":160,"mdi:web":162,"la:apple":164,"ph:google-logo-bold":167,"ph:google-logo":170},{"left":157,"top":157,"width":158,"height":158,"rotate":157,"vFlip":125,"hFlip":125,"body":159},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":157,"top":157,"width":158,"height":158,"rotate":157,"vFlip":125,"hFlip":125,"body":161},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":157,"top":157,"width":158,"height":158,"rotate":157,"vFlip":125,"hFlip":125,"body":163},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":157,"top":157,"width":165,"height":165,"rotate":157,"vFlip":125,"hFlip":125,"body":166},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":157,"top":157,"width":168,"height":168,"rotate":157,"vFlip":125,"hFlip":125,"body":169},256,"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"left":157,"top":157,"width":168,"height":168,"rotate":157,"vFlip":125,"hFlip":125,"body":171},"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"t96FybqVTi":8,"oVhJaef6Ht":8,"B5a6Wsk9T5":8,"fJ7gll588I":8},"/expert/fred-20?page=7"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}