1. Given \( f(x) = 2x + 3 \)
- Use the limit definition of a derivative:
f'(x) = \lim_{h \to 0} \frac{2h}{h}
- Simplify:
f'(x) = 2
Answer: \( f'(x) = 2 \)
2. Given \( f(x) = 2x^2 + 2x - 1 \)
- Use the limit definition of a derivative:
f'(x) = \lim_{h \to 0} \frac{4xh + 2h^2 + 2h}{h}
- Simplify:
f'(x) = \lim_{h \to 0} (4x + 2h + 2)
- Substitute \( h = 0 \):
f'(x) = 4x + 2
Answer: \( f'(x) = 4x + 2 \)