Question

0<x<2π aralığındaki f(x)=x÷2 fonksiyonunun 0 < x < 4π için grafiğini çiziniz ve 0<x<2n için Fourier seri dönüşümünü gerçekleştiriniz.

280

likes
1402 views

Answer to a math question 0<x<2π aralığındaki f(x)=x÷2 fonksiyonunun 0 < x < 4π için grafiğini çiziniz ve 0<x<2n için Fourier seri dönüşümünü gerçekleştiriniz.

Expert avatar
Bud
4.6
96 Answers
Öncelikle, f(x) = x/2 fonksiyonunun grafiğini çizelim.

0 < x < 2π aralığı için f(x) = x/2 fonksiyonunun grafiği aşağıdaki gibi olacaktır:

\begin{align*} \text{Grafiğin üzerindeki noktalar:} \ (0, 0), (\pi/2, \pi/4), (\pi, \pi/2), (3\pi/2, 3\pi/4), (2\pi, \pi) \ \text{Ve bu noktaları birleştiren bir doğru elde edeceğiz.}\end{align*}

Grafiği çizdikten sonra, Fourier serisi dönüşümünü gerçekleştirelim.

Fourier Serisi Dönüşümü için a0, an ve bn katsayılarını bulmamız gerekiyor. Bunları hesaplayalım:

\begin{align*} a0 = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} dx = \frac{1}{2\pi} \left[ \frac{1}{2} x^2 \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[ \frac{1}{2} (2\pi)^2 \right] = \frac{\pi}{2}\end{align*}

\begin{align*} an = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} \cos(nx) dx\end{align*}

Burada x/2'nin çift veya tek olduğunu kontrol etmeliyiz. Eğer x/2 çift ise, an = 0 olacaktır. Eğer x/2 tek ise, an kısmını hesaplamalıyız:

\begin{align*} an = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} \cos(nx) dx = \frac{1}{2\pi} \left[ x \sin(nx) + \frac{1}{n} \cos(nx) \right]_{0}^{2\pi} = \frac{1}{2n\pi} (0 + \frac{1}{n} - (0 - \frac{1}{n})) = \frac{2}{n^2\pi}\end{align*}

\begin{align*} bn = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} \sin(nx) dx\end{align*}

Burada x/2'nin çift veya tek olduğunu kontrol etmeliyiz. Eğer x/2 çift ise, bn kısmını hesaplamalıyız:

\begin{align*} bn = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} \sin(nx) dx = \frac{1}{2\pi} \left[ - x \cos(nx) + \frac{1}{n} \sin(nx) \right]_{0}^{2\pi} = \frac{1}{2n\pi} (0 - (\pi\cos(2n\pi) - 0)) = \frac{1}{2n\pi} \pi = \frac{1}{2n}\end{align*}

Bu şekilde Fourier serisi dönüşümünü elde ettik.

Sonuç olarak, 0 < x < 4π aralığı için f(x) = x/2 fonksiyonunun grafiği aşağıdaki gibi olacaktır:

\begin{align*} \text{Grafiğin üzerindeki noktalar:} \ (0, 0), (\pi/2, \pi/4), (\pi, \pi/2), (3\pi/2, 3\pi/4), (2\pi, \pi), (5\pi/2, 5\pi/4), (3\pi, 3\pi/2), (7\pi/2, 7\pi/4), (4\pi, \pi) \ \text{Ve bu noktaları birleştiren bir doğru elde edeceğiz.}\end{align*}

Fourier serisi dönüşümü için:

\begin{align*} f(x) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi} \cos(nx) + \frac{1}{2n} \sin(nx)\end{align*}

Yukarıdaki seriyi 0 < x < 2n için gösterdik.

Frequently asked questions (FAQs)
What is the maximum value attained by the cosine function f(x) = cos x on the interval [-π/2, π/2]?
+
What is the dot product of vector A (2, 3) and vector B (4, -1)?
+
Find the constant value c for the function f(x)=c, given that f(3)=10.
+
New questions in Mathematics
5 . {2/5 + [ (8/-9) - (1/-7) + (-2/5) ] ÷ (2/-5)} . 8/15
A hotel in the Algarve had to offer 1 week of vacation to one of its employees as an Easter gift in a random choice. It is known that 80 people work in this hotel unit, 41 of whom are Portuguese and 39 are foreign nationals. There are 14 Portuguese men and 23 foreign women. Using what you know about conditional probability, check the probability that the gift was offered to a Portuguese citizen, knowing that it was a woman.
STUDENTS IN A CLASS LEARN ONLY ONE FOREIGN LANGUAGE. two-sevenths of the students learn German, half of the students learn Spanish, and the remaining six students learn Italian. what is the number of students in this class? detail your reasoning carefully.
Calculate the equation of the tangent line ay=sin(x) cos⁡(x)en x=π/2
Divide 22 by 5 solve it by array and an area model
How many different ways can a psychology student select 5 subjects from a pool of 20 subjects and assign each one to a different experiment?
-27=-7u 5(u-3)
Determine the minimum degree that an algebraic equation can assume knowing that it admits 2 as a double root and -i as a triple root
Calculate the minimum size of a simple random sample assuming a sampling error of 5% assuming that the population size is 100 elements
There are 3 orchards, a, b and c. Orchard a has 60 fewer trees than orchard b orchard c has 3 times as many trees as orchard b. If the three orchards have 430 trees altogether, how many trees does orchard c have?
Use a pattern approach to explain why (-2)(-3)=6
9 x² + 2x + 1 = 0
9.25=2pi r solve for r
A car travels 211 miles on 15 gallons of gasoline. The best estimate of the car’s miles per gallon is?
How to factorise 5y^2 -7y -52
In poker, a full house consists of five cards, where two of the cards have the same number (or letter) and the remaining three also have the same number (or letter) as each other (but not as the previous two cards). Use a search engine or Wikipedia to understand the concept better if necessary. In how many different ways can one obtain a full house?
Find the vertex F(x)=x^2-10x
The average weekly earnings in the leisure and hospitality industry group for a re‐ cent year was $273. A random sample of 40 workers showed weekly average ear‐ nings of $285 with the population standard deviation equal to 58. At the 0.05 level of significance can it be concluded that the mean differs from $273? Find a 95% con‐ fidence interval for the weekly earnings and show that it supports the results of the hypothesis test.
To paint a 250 m wall, a number of workers were employed. If the wall were 30 m longer, 9 more workers would be needed. How many were employed at the beginning?
Kayla started a book club at her school. The number of girls in the book club was one more than twice the number of boys. If there are 15 girls in the book club, how many boys are in the club?