Question

0<x<2π aralığındaki f(x)=x÷2 fonksiyonunun 0 < x < 4π için grafiğini çiziniz ve 0<x<2n için Fourier seri dönüşümünü gerçekleştiriniz.

280

likes
1402 views

Answer to a math question 0<x<2π aralığındaki f(x)=x÷2 fonksiyonunun 0 < x < 4π için grafiğini çiziniz ve 0<x<2n için Fourier seri dönüşümünü gerçekleştiriniz.

Expert avatar
Bud
4.6
97 Answers
Öncelikle, f(x) = x/2 fonksiyonunun grafiğini çizelim.

0 < x < 2π aralığı için f(x) = x/2 fonksiyonunun grafiği aşağıdaki gibi olacaktır:

\begin{align*} \text{Grafiğin üzerindeki noktalar:} \ (0, 0), (\pi/2, \pi/4), (\pi, \pi/2), (3\pi/2, 3\pi/4), (2\pi, \pi) \ \text{Ve bu noktaları birleştiren bir doğru elde edeceğiz.}\end{align*}

Grafiği çizdikten sonra, Fourier serisi dönüşümünü gerçekleştirelim.

Fourier Serisi Dönüşümü için a0, an ve bn katsayılarını bulmamız gerekiyor. Bunları hesaplayalım:

\begin{align*} a0 = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} dx = \frac{1}{2\pi} \left[ \frac{1}{2} x^2 \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[ \frac{1}{2} (2\pi)^2 \right] = \frac{\pi}{2}\end{align*}

\begin{align*} an = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} \cos(nx) dx\end{align*}

Burada x/2'nin çift veya tek olduğunu kontrol etmeliyiz. Eğer x/2 çift ise, an = 0 olacaktır. Eğer x/2 tek ise, an kısmını hesaplamalıyız:

\begin{align*} an = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} \cos(nx) dx = \frac{1}{2\pi} \left[ x \sin(nx) + \frac{1}{n} \cos(nx) \right]_{0}^{2\pi} = \frac{1}{2n\pi} (0 + \frac{1}{n} - (0 - \frac{1}{n})) = \frac{2}{n^2\pi}\end{align*}

\begin{align*} bn = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} \sin(nx) dx\end{align*}

Burada x/2'nin çift veya tek olduğunu kontrol etmeliyiz. Eğer x/2 çift ise, bn kısmını hesaplamalıyız:

\begin{align*} bn = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} \sin(nx) dx = \frac{1}{2\pi} \left[ - x \cos(nx) + \frac{1}{n} \sin(nx) \right]_{0}^{2\pi} = \frac{1}{2n\pi} (0 - (\pi\cos(2n\pi) - 0)) = \frac{1}{2n\pi} \pi = \frac{1}{2n}\end{align*}

Bu şekilde Fourier serisi dönüşümünü elde ettik.

Sonuç olarak, 0 < x < 4π aralığı için f(x) = x/2 fonksiyonunun grafiği aşağıdaki gibi olacaktır:

\begin{align*} \text{Grafiğin üzerindeki noktalar:} \ (0, 0), (\pi/2, \pi/4), (\pi, \pi/2), (3\pi/2, 3\pi/4), (2\pi, \pi), (5\pi/2, 5\pi/4), (3\pi, 3\pi/2), (7\pi/2, 7\pi/4), (4\pi, \pi) \ \text{Ve bu noktaları birleştiren bir doğru elde edeceğiz.}\end{align*}

Fourier serisi dönüşümü için:

\begin{align*} f(x) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi} \cos(nx) + \frac{1}{2n} \sin(nx)\end{align*}

Yukarıdaki seriyi 0 < x < 2n için gösterdik.

Frequently asked questions (FAQs)
What is the length of the hypotenuse in a right triangle if the other two sides measure 5 and 12 units respectively?
+
Math Question: What is the limit of the sum of two functions as x approaches a?
+
What is the value of sinh(4) - cosh(5) + tanh(2)?
+
New questions in Mathematics
Find 2 numbers that the sum of 1/3 of the first plus 1/5 of the second will be equal to 13 and that if you multiply the first by 5 and the second by 7 you get 247 as the sum of the two products with replacement solution
2x-y=5 x-y=4
4x-3y=5;x+2y=4
Margin of error E=0.30 populations standard deviation =2.5. Population means with 95% confidence. What I the required sample size (round up to the whole number)
"If three wolves catch three rabbits in three hours, how many wolves would it take to catch a hundred rabbits in a hundred hours?" The answer is the number of response units.
A study reports the following final notation: F (3, 32) = 9.50, p < .05. How many total participants were involved in this study? Group of answer choices 34 32 36
Suppose you have a sample of 100 values from a population with mean mu = 500 and standard deviation sigma = 80. Given that P(z < −1.25) = 0.10565 and P(z < 1.25) = 0.89435, the probability that the sample mean is in the interval (490, 510) is: A)78.87% B)89.44% C)10.57% D)68.27%
Determine the reduced equation of the straight line that is perpendicular to the straight line r: y=4x-10 and passes through the origin of the Cartesian plane
Determine the increase of the function y=4x−5 when the argument changes from x1=2 to x2=3
The sick-leave time of employees in a firm in a month is normally with a mean of 100 hours and a standard deviation of 20 hours. Find the probability that the sick-leave time of an employee in a month exceeds 130 hours.
Quadratic equation 2X = 15/X + 7
A function is considered exponential when it has a base with positive values greater than zero and different from one, where the exponent is an unknown. An important characteristic of exponential functions is that they show rapid growth or decay as an independent variable increases or decreases. Given the function 25^(x+3)=125, it is calculated that x has the value of
Find the center coordinates and radius of a circle for an equation written as: 3x2 + 3y2 - 6y = —12× + 24
Solve for B write your answer as a fraction or as a whole number. B-1/7=4
Arturo had hospitalization expenses of $8,300. Your policy for medical expenses Seniors have a deductible of $500 and expenses are paid at a 20% coinsurance. These are the first expenses ever this year, how much will Arturo have to pay in your bill for hospitalization expenses?
9n + 7(-8 + 4k) use k=2 and n=3
How many digits are there in Hindu-Arabic form of numeral 26 × 1011
5a-3.(a-7)=-3
12[4 + (8 + 7) + 5]
5 1/9 + 2 2/3