Question

0<x<2π aralığındaki f(x)=x÷2 fonksiyonunun 0 < x < 4π için grafiğini çiziniz ve 0<x<2n için Fourier seri dönüşümünü gerçekleştiriniz.

280

likes
1402 views

Answer to a math question 0<x<2π aralığındaki f(x)=x÷2 fonksiyonunun 0 < x < 4π için grafiğini çiziniz ve 0<x<2n için Fourier seri dönüşümünü gerçekleştiriniz.

Expert avatar
Bud
4.6
97 Answers
Öncelikle, f(x) = x/2 fonksiyonunun grafiğini çizelim.

0 < x < 2π aralığı için f(x) = x/2 fonksiyonunun grafiği aşağıdaki gibi olacaktır:

\begin{align*} \text{Grafiğin üzerindeki noktalar:} \ (0, 0), (\pi/2, \pi/4), (\pi, \pi/2), (3\pi/2, 3\pi/4), (2\pi, \pi) \ \text{Ve bu noktaları birleştiren bir doğru elde edeceğiz.}\end{align*}

Grafiği çizdikten sonra, Fourier serisi dönüşümünü gerçekleştirelim.

Fourier Serisi Dönüşümü için a0, an ve bn katsayılarını bulmamız gerekiyor. Bunları hesaplayalım:

\begin{align*} a0 = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} dx = \frac{1}{2\pi} \left[ \frac{1}{2} x^2 \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[ \frac{1}{2} (2\pi)^2 \right] = \frac{\pi}{2}\end{align*}

\begin{align*} an = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} \cos(nx) dx\end{align*}

Burada x/2'nin çift veya tek olduğunu kontrol etmeliyiz. Eğer x/2 çift ise, an = 0 olacaktır. Eğer x/2 tek ise, an kısmını hesaplamalıyız:

\begin{align*} an = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} \cos(nx) dx = \frac{1}{2\pi} \left[ x \sin(nx) + \frac{1}{n} \cos(nx) \right]_{0}^{2\pi} = \frac{1}{2n\pi} (0 + \frac{1}{n} - (0 - \frac{1}{n})) = \frac{2}{n^2\pi}\end{align*}

\begin{align*} bn = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} \sin(nx) dx\end{align*}

Burada x/2'nin çift veya tek olduğunu kontrol etmeliyiz. Eğer x/2 çift ise, bn kısmını hesaplamalıyız:

\begin{align*} bn = \frac{1}{\pi} \int_{0}^{2\pi} \frac{x}{2} \sin(nx) dx = \frac{1}{2\pi} \left[ - x \cos(nx) + \frac{1}{n} \sin(nx) \right]_{0}^{2\pi} = \frac{1}{2n\pi} (0 - (\pi\cos(2n\pi) - 0)) = \frac{1}{2n\pi} \pi = \frac{1}{2n}\end{align*}

Bu şekilde Fourier serisi dönüşümünü elde ettik.

Sonuç olarak, 0 < x < 4π aralığı için f(x) = x/2 fonksiyonunun grafiği aşağıdaki gibi olacaktır:

\begin{align*} \text{Grafiğin üzerindeki noktalar:} \ (0, 0), (\pi/2, \pi/4), (\pi, \pi/2), (3\pi/2, 3\pi/4), (2\pi, \pi), (5\pi/2, 5\pi/4), (3\pi, 3\pi/2), (7\pi/2, 7\pi/4), (4\pi, \pi) \ \text{Ve bu noktaları birleştiren bir doğru elde edeceğiz.}\end{align*}

Fourier serisi dönüşümü için:

\begin{align*} f(x) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2\pi} \cos(nx) + \frac{1}{2n} \sin(nx)\end{align*}

Yukarıdaki seriyi 0 < x < 2n için gösterdik.

Frequently asked questions (FAQs)
Question: "Factor the expression 7x^2 - 28x + 21 using the distributive property."
+
What is the value of f(2) for the function f(x) = 1/x?
+
Question: What is the magnitude of the unit vector formed by the components (-3, 4) in the xy-plane?
+
New questions in Mathematics
A normal random variable x has a mean of 50 and a standard deviation of 10. Would it be unusual to see the value x = 0? Explain your answer.
If you have a bag with 18 white balls and 2 black balls. What is the probability of drawing a white ball? And extracting a black one?
5/8 x 64
Let I ⊂ R be a bounded and nonempty interval. Show that there are numbers a, b ∈ R with a ≤ b and I =[a,b] or I =[a,b) or I =(a,b] or I =(a,b)
Consider numbers from 1 to 2023. We want to delete 3 consecutive, so that the avarage of the left numbers is a whole number. How do we do that
Answer the following questions regarding the expression below. 0.1 (a) Write the number as a fraction.
Solve this mathematical problem if 3/5 of a roll of tape measures 2m. How long is the complete roll? Draw the diagram
Find the equation of the line perpendicular to −5𝑥−3𝑦+5=0 passing through the point (0,−2)
prove that if n odd integer then n^2+5 is even
-3(-4x+5)=-6(7x-8)+9-10x
(2m+3)(4m+3)=0
-1%2F2x-4%3D18
3%2B2
A,B,C and D are the corners of a rectangular building. Find the lengths the diagonals if AB measures 38' - 9" and AD measures 56' - 3"
The blood types of individuals in society are as follows: A: 30%, B: 25%, AB: 20%, 0: 25%. It is known that the rates of contracting a certain disease according to blood groups are as follows: A: 7%, B: 6%, AB: 7%, 0: 4%. Accordingly, if a person selected by chance is known to have this disease, what is the probability of having blood group O?
16-(x²+x+2)²
Hola👋🏻 Toca en "Crear Nueva Tarea" para enviar tu problema de matemáticas. ¡Uno de nuestros expertos comenzará a trabajar en ello de inmediato!
t+72/t=-17
Question 3 A square has a perimeter given by the algebraic expression 24x – 16. Write the algebraic expression that represents one of its sides.
Construct a set of six pieces of data with​ mean, median, and midrange of 67 and where no two pieces of data are the same.