Question

Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?

240

likes
1201 views

Answer to a math question Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?

Expert avatar
Bud
4.6
96 Answers
Las anualidades perpetuas son un tipo de acuerdo financiero en el que una serie de pagos continúa indefinidamente, lo que significa que no hay una fecha de finalización especificada. Si bien el concepto de anualidades perpetuas implica un número infinito de pagos, los cálculos prácticos se basan en el supuesto de que los pagos continuarán para siempre. La fórmula para calcular el valor presente (PV) de una anualidad perpetua implica dividir el pago anual (PMT) por una tasa de descuento (r). La fórmula es la siguiente: PV= \frac Dónde: PV es el valor presente de la anualidad perpetua. PMT es el pago anual. r es la tasa de descuento. Esta fórmula se deriva del concepto de valor presente, que refleja la idea de que el valor de los pagos futuros disminuye con el tiempo cuando se descuentan a una determinada tasa. En el caso de una anualidad perpetua, la división por la tasa de descuento supone que los pagos continuarán indefinidamente. Es importante tener en cuenta que las anualidades perpetuas son construcciones teóricas y, en realidad, los pagos verdaderamente perpetuos son raros. La mayoría de los instrumentos financieros tienen una duración finita, pero para simplificar en ciertos modelos financieros, se pueden utilizar las perpetuidades como concepto matemático. En términos prácticos, cuando se trata de instrumentos financieros que tienen una vida útil finita, se utilizaría una fórmula similar para el valor presente de una anualidad ordinaria, que implica descontar cada pago futuro a su valor presente y sumarlos. La fórmula de perpetuidad es una simplificación útil para discusiones teóricas y ciertos modelos financieros.

Frequently asked questions (FAQs)
Math Question: How many different types of triangles can be formed using side lengths 8, 10, 12?
+
What is the value of a constant function f(x)=c, where c is a real number?
+
What is the limit of sinh(x) as x approaches infinity?
+
New questions in Mathematics
A=m/2-t isolate t
Find the measures of the sides of ∆KPL and classify each triangle by its sides k (-2,-6), p (-4,0), l (3,-1)
4X^2 25
4x-3y=5;x+2y=4
If f(x,y)=6xy^2+3y^3 find (∫3,-2) f(x,y)dx.
The equation of the straight line that passes through the coordinate point (2,5) and is parallel to the straight line with equation x 2y 9 = 0 is
find x in the equation 2x-4=6
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
determine the polynomial F of degree 2 that interpolates. f at points (0;1) (2;5) (4;6). calculate F(0.8). Note: Using the polynomial expression with difference operator.
show step by step simplification: (¬𝑑∨((¬b∧c)∨(b∧¬c)))∧((𝑎 ∧ 𝑏) ∨ (¬𝑎 ∧ ¬𝑏))∧(¬𝑐∨((¬𝑑∧𝑎)∨(𝑑∧¬𝑎)))
Solve the following equation for x in exact form and then find the value to the nearest hundredths (make sure to show your work): 5e3x – 3 = 25
The function h(t)=-5t^2+20t+60 models the height in meters of a ball t seconds after it’s thrown . Which describe the intercepts and vertex of this function
Determine the increase of the function y=4x−5 when the argument changes from x1=2 to x2=3
If the regression equation is given by 4x –y + 5 = 0, then the slope of regression line of y on x is
A popular cell phone family plan provides 1500 minutes. It charges 89.99/month for the first 2 lines and 9.99 for every line after that. Unlimited text messages for all phone lines costs $30.00/month, and Internet costs $10.00/month per phone line. If a family with a $200 monthly budget buys this plan and signs up for unlimited text messaging and Internet on each phone line, how many cell phone lines can they afford? Use an inequality to solve this problem. Graph your solution on the number line and explain the meaning of your graph in a sentence.
Find the zero of the linear function 8x + 24 = 0
The mean of 4 numbers is 5 and the mean of 3 different numbers is 12. What is the mean of the 7 numbers together? Produce an algebraic solution. Guess and check is acceptable.
A rectangular swimming pool has a length of 14 feet, a width of 26 feet and a depth of 5 feet. Round answers to the nearest hundredth as needed. (a) How many cubic feet of water can the pool hold? cubic feet (b) The manufacturer suggests filling the pool to 95% capacity. How many cubic feet of water is this? cubic feet
97,210 ➗ 82 division
Find the number of liters of water needed to reduce 9 liters of lotion. shave containing 50% alcohol to a lotion containing 30% alcohol.