Question

Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?

240

likes
1201 views

Answer to a math question Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?

Expert avatar
Bud
4.6
96 Answers
Las anualidades perpetuas son un tipo de acuerdo financiero en el que una serie de pagos continúa indefinidamente, lo que significa que no hay una fecha de finalización especificada. Si bien el concepto de anualidades perpetuas implica un número infinito de pagos, los cálculos prácticos se basan en el supuesto de que los pagos continuarán para siempre. La fórmula para calcular el valor presente (PV) de una anualidad perpetua implica dividir el pago anual (PMT) por una tasa de descuento (r). La fórmula es la siguiente: PV= \frac Dónde: PV es el valor presente de la anualidad perpetua. PMT es el pago anual. r es la tasa de descuento. Esta fórmula se deriva del concepto de valor presente, que refleja la idea de que el valor de los pagos futuros disminuye con el tiempo cuando se descuentan a una determinada tasa. En el caso de una anualidad perpetua, la división por la tasa de descuento supone que los pagos continuarán indefinidamente. Es importante tener en cuenta que las anualidades perpetuas son construcciones teóricas y, en realidad, los pagos verdaderamente perpetuos son raros. La mayoría de los instrumentos financieros tienen una duración finita, pero para simplificar en ciertos modelos financieros, se pueden utilizar las perpetuidades como concepto matemático. En términos prácticos, cuando se trata de instrumentos financieros que tienen una vida útil finita, se utilizaría una fórmula similar para el valor presente de una anualidad ordinaria, que implica descontar cada pago futuro a su valor presente y sumarlos. La fórmula de perpetuidad es una simplificación útil para discusiones teóricas y ciertos modelos financieros.

Frequently asked questions (FAQs)
What is the value of x when f(x) = 1000 for the exponential function f(x) = 10^x, and what is the value of x when f(x) = 100 for the exponential function f(x) = e^x?
+
What is the sine of an angle when given the opposite side and hypotenuse?
+
What is the domain of the trigonometric function f(x) = sin(x) + cos(x)
+
New questions in Mathematics
Calculate to represent the function whose graph is a line that passes through the points (1,2) and (−3,4). What is your slope?
How to find the value of x and y which satisfy both equations x-2y=24 and 8x-y=117
A=m/2-t isolate t
10! - 8! =
the value of sin 178°58'
(2x+5)^3+(x-3)(x+3)
Determine the reduced equation of the straight line that is perpendicular to the straight line r: y=4x-10 and passes through the origin of the Cartesian plane
form a key for your lock containing the numbers 2 2 5 8 How many different keys can you form?
In the telephone exchange of a certain university, calls come in at a rate of 5 every 2 minutes. Assuming a Poisson distribution, the average number of calls per second is: a) 1/8 b) 1/12 c) 1/10 d) 2/5 e) 1/24
Solve the following equation for x in exact form and then find the value to the nearest hundredths (make sure to show your work): 5e3x – 3 = 25
DuocUC 2) The cost C, in pesos, for the production of x meters of a certain fabric can be calculated through the function: (x+185) C(x)=81300-6x+ 20000 a) It is known that C(90) 5.344. Interpret this result. (2 points) b) Calculate C'(x) (2 points) 3 x²+111x-0.87 20000 2000 c) Function C calculates the cost while producing a maximum of 500 meters of fabric. Determine the values of x at which the cost of production is increasing and the values of x at which the cost is decreasing. (3 points) d) If a maximum of 500 meters of fabric are produced, what is the minimum production cost? (
Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.
When Sara was 15 years old, an uncle left her as inheritanceà a sum of 10,000 euros which he invested in a bank that applies the interest rate of 2,5% annual. Today Sara is 18 years and wants to buy a'car, how much she can ò withdraw from the bank?
A hardware bill totals $857.63 with discounts of 5% and 3%. What is the net cost of the Material ?
Write the equation of the line that is parallel to y= 4x-7 and has a y- intercept at (0,5)
Consider the function f(x)=1/2(x+1)^2-3. Use the preceding/following interval method to estimate the instantaneous rate of change at 𝑥 = 1.
Given a circle 𝑘(𝑆; 𝑟 = 4 𝑐𝑚) and a line |𝐴𝐵| = 2 𝑐𝑚. Determine and construct the set of all centers of circles that touch circle 𝑘 and have radius 𝑟 = |𝐴𝐵|
22. Let [AB] be a chord in a circle C, and k a circle which is internally tangent to the circle C at a point P and to the chord [AB] at a point Q. Show that the line P Q passes through the midpoint of the arc AB opposite to the arc APB.
simplify w+[6+(-5)]
In a cheese factory, one pie costs 3800 denars. The fixed ones costs are 1,200,000 denars, and variable costs are 2,500 denars per pie. To encounter: a) income functions. profit and costs; b) the break-even point and profit and loss intervals.