Question

Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?

240

likes
1201 views

Answer to a math question Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?

Expert avatar
Bud
4.6
96 Answers
Las anualidades perpetuas son un tipo de acuerdo financiero en el que una serie de pagos continúa indefinidamente, lo que significa que no hay una fecha de finalización especificada. Si bien el concepto de anualidades perpetuas implica un número infinito de pagos, los cálculos prácticos se basan en el supuesto de que los pagos continuarán para siempre. La fórmula para calcular el valor presente (PV) de una anualidad perpetua implica dividir el pago anual (PMT) por una tasa de descuento (r). La fórmula es la siguiente: PV= \frac Dónde: PV es el valor presente de la anualidad perpetua. PMT es el pago anual. r es la tasa de descuento. Esta fórmula se deriva del concepto de valor presente, que refleja la idea de que el valor de los pagos futuros disminuye con el tiempo cuando se descuentan a una determinada tasa. En el caso de una anualidad perpetua, la división por la tasa de descuento supone que los pagos continuarán indefinidamente. Es importante tener en cuenta que las anualidades perpetuas son construcciones teóricas y, en realidad, los pagos verdaderamente perpetuos son raros. La mayoría de los instrumentos financieros tienen una duración finita, pero para simplificar en ciertos modelos financieros, se pueden utilizar las perpetuidades como concepto matemático. En términos prácticos, cuando se trata de instrumentos financieros que tienen una vida útil finita, se utilizaría una fórmula similar para el valor presente de una anualidad ordinaria, que implica descontar cada pago futuro a su valor presente y sumarlos. La fórmula de perpetuidad es una simplificación útil para discusiones teóricas y ciertos modelos financieros.

Frequently asked questions (FAQs)
What is the dot product of vector A with magnitude 2 and direction (3, -1) with vector B of magnitude 5 and direction (-2, 4)?
+
How many x-intercepts does a quadratic function with a vertex at (3, 4) and a y-intercept at (0, -2) have?
+
What is the radian measure of an angle in a circle with circumference 5π units?
+
New questions in Mathematics
calculate the derivative by the limit definition: f(x) = 6x^3 + 2
Solution of the equation y'' - y' -6y = 0
find the value of the tangent if it is known that the cos@= 1 2 and the sine is negative. must perform procedures.
-8+3/5
The random variable Y is defined as the sum between two different integers selected at random between -4 and 2 (both included). What are the possible values of the random variable Y? What is the value of P(Y=-3)? And whether it is less than or equal to -5?
A drawer contains three pairs of white socks, five pairs of black socks and two pairs of red socks. Caden randomly selects two pairs of socks on his way to the gym. What is the probability that both pairs of socks are black?
A juice shop prepares assorted juices, for their juices they have 5 different types of fruit. How many types of assortments can be prepared in total, if it is considered an assortment to a juice made with two or more fruits?
Find the root of x^4-10x^ 5=0 using Newton's method, with a precision of the smallest positive root.
The function g:Q→Q is a ring homomorphism such that g(3)=3 and g(5)=5. What are the values of g(8) and g(9)?
Find the equation of the line perpendicular to −5𝑥−3𝑦+5=0 passing through the point (0,−2)
Substitute a=2 and b=-3 and c=-4 to evaluate 2ac/(-2b^2-a)
form a key for your lock containing the numbers 2 2 5 8 How many different keys can you form?
Calculate the boiling temperature and freezing temperature at 1 atmosphere pressure of a solution formed by dissolving 123 grams of ferrous oxide in 1.890 grams of HCl.
How many square feet of floor area are there in three two-storey apartment houses, each of which is 38 feet wide and 76 feet long?
How to do 15 x 3304
At the dance there are 150 boys the rest are girls. If 65% are girls what is the total amount in the room
Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π). cos30=0
In poker, a full house consists of five cards, where two of the cards have the same number (or letter) and the remaining three also have the same number (or letter) as each other (but not as the previous two cards). Use a search engine or Wikipedia to understand the concept better if necessary. In how many different ways can one obtain a full house?
7-1=6 6x2=12 Explain that
A grain silo has a height of 8.8m with a 11.4m diameter. If it is filled 0.5% of it's volume, how much grain (m^3) is stored in the silo? (0 decimal places)