Question

Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?

240

likes
1201 views

Answer to a math question Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?

Expert avatar
Bud
4.6
97 Answers
Las anualidades perpetuas son un tipo de acuerdo financiero en el que una serie de pagos continúa indefinidamente, lo que significa que no hay una fecha de finalización especificada. Si bien el concepto de anualidades perpetuas implica un número infinito de pagos, los cálculos prácticos se basan en el supuesto de que los pagos continuarán para siempre. La fórmula para calcular el valor presente (PV) de una anualidad perpetua implica dividir el pago anual (PMT) por una tasa de descuento (r). La fórmula es la siguiente: PV= \frac Dónde: PV es el valor presente de la anualidad perpetua. PMT es el pago anual. r es la tasa de descuento. Esta fórmula se deriva del concepto de valor presente, que refleja la idea de que el valor de los pagos futuros disminuye con el tiempo cuando se descuentan a una determinada tasa. En el caso de una anualidad perpetua, la división por la tasa de descuento supone que los pagos continuarán indefinidamente. Es importante tener en cuenta que las anualidades perpetuas son construcciones teóricas y, en realidad, los pagos verdaderamente perpetuos son raros. La mayoría de los instrumentos financieros tienen una duración finita, pero para simplificar en ciertos modelos financieros, se pueden utilizar las perpetuidades como concepto matemático. En términos prácticos, cuando se trata de instrumentos financieros que tienen una vida útil finita, se utilizaría una fórmula similar para el valor presente de una anualidad ordinaria, que implica descontar cada pago futuro a su valor presente y sumarlos. La fórmula de perpetuidad es una simplificación útil para discusiones teóricas y ciertos modelos financieros.

Frequently asked questions (FAQs)
Question: Find the absolute extrema of the function f(x) = x^3 - 6x^2 + 9x + 2 on the interval [-2, 4].
+
How many different committees of 4 students can be formed from a group of 10 students?
+
What is the x-intercept of the quadratic function f(x) = 2x^2 + 3x - 5?
+
New questions in Mathematics
1 + 1
Solution of the equation y'' - y' -6y = 0
2. Juan is flying a piscucha. He is releasing the thread, having his hand at the height of the throat, which is 1.68 meters from the ground, if the thread forms an angle of elevation of 50°, at what height is the piscucha at the moment that Juan has released 58 meters of the thread?
(6.2x10^3)(3x10^-6)
what is the annual rate on ​$525 at 0.046​% per day for 3 months?
The expected market return is 13,86% and the risk free rate 1%. What would then be the risk premium on the common stocks of a company which beta is 1,55? (in %, 2 decimal places)
The thermal representation f(x) = 20 times 0.8 to the power of x is known from an exponential function f. Specify the intersection point with the y-axis
I want you to solve this problem as a grade sixth pupil in primary school: 8 Pigs ate 6 bags of fee in 20 days. How long will it take 10 pigs to eat 15 bags of feed eating at the same rate?
-1%2F2x-4%3D18
The volume of a cube decreases at a rate of 10 m3/s. Find the rate at which the side of the cube changes when the side of the cube is 2 m.
A popular cell phone family plan provides 1500 minutes. It charges 89.99/month for the first 2 lines and 9.99 for every line after that. Unlimited text messages for all phone lines costs $30.00/month, and Internet costs $10.00/month per phone line. If a family with a $200 monthly budget buys this plan and signs up for unlimited text messaging and Internet on each phone line, how many cell phone lines can they afford? Use an inequality to solve this problem. Graph your solution on the number line and explain the meaning of your graph in a sentence.
A,B,C and D are the corners of a rectangular building. Find the lengths the diagonals if AB measures 38' - 9" and AD measures 56' - 3"
A building lot is in the shape of a triangle with a base of 133 feet and a height of 76 feet. What is it's area in square feet?
suppose a city with population 80,000 has been growing at a rate of 8% per year if this rate continues find the population of this city in 10 years
Find the area of a triangle ABC when m<C = 14 degrees, a = 5.7 miles, and b = 9.3 miles.
How many cards do you expect to pull from a poker deck until you get an ACE?
If sin A=0.3 and cos A=0.6, determine the value of tan A.
2 - 6x = -16x + 28
The perimeter of a rectangular rug is 42 feet. The width is 9 feet. What is the length?
8(x+4) -4=4x-1