Question

Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?

240

likes
1201 views

Answer to a math question Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?

Expert avatar
Bud
4.6
96 Answers
Las anualidades perpetuas son un tipo de acuerdo financiero en el que una serie de pagos continúa indefinidamente, lo que significa que no hay una fecha de finalización especificada. Si bien el concepto de anualidades perpetuas implica un número infinito de pagos, los cálculos prácticos se basan en el supuesto de que los pagos continuarán para siempre. La fórmula para calcular el valor presente (PV) de una anualidad perpetua implica dividir el pago anual (PMT) por una tasa de descuento (r). La fórmula es la siguiente: PV= \frac Dónde: PV es el valor presente de la anualidad perpetua. PMT es el pago anual. r es la tasa de descuento. Esta fórmula se deriva del concepto de valor presente, que refleja la idea de que el valor de los pagos futuros disminuye con el tiempo cuando se descuentan a una determinada tasa. En el caso de una anualidad perpetua, la división por la tasa de descuento supone que los pagos continuarán indefinidamente. Es importante tener en cuenta que las anualidades perpetuas son construcciones teóricas y, en realidad, los pagos verdaderamente perpetuos son raros. La mayoría de los instrumentos financieros tienen una duración finita, pero para simplificar en ciertos modelos financieros, se pueden utilizar las perpetuidades como concepto matemático. En términos prácticos, cuando se trata de instrumentos financieros que tienen una vida útil finita, se utilizaría una fórmula similar para el valor presente de una anualidad ordinaria, que implica descontar cada pago futuro a su valor presente y sumarlos. La fórmula de perpetuidad es una simplificación útil para discusiones teóricas y ciertos modelos financieros.

Frequently asked questions (FAQs)
What is 75 percent as a fraction?
+
Question: Find the derivative of f(x) = sin(2x) - cos(3x) + tan(4x) at x = π/6.
+
Question: Solve for x: 2(x + 5) - 3(4x - 2) = 7x - 3
+
New questions in Mathematics
find the value of the tangent if it is known that the cos@= 1 2 and the sine is negative. must perform procedures.
A normally distributed population has a mean of 118 with a standard deviation of 18. What score separates the lowest 72% of the distribution from the rest of the scores?
Revenue Maximization: A company sells products at a price of $50 per unit. The demand function is p = 100 - q, where p is the price and q is the quantity sold. How many units should they sell to maximize revenue?
3(4x-1)-2(x+3)=7(x-1)+2
Derivative of x squared
224 × (6÷8)
Desarrolla (2x)(3y + 2x)5
If you randomly selected one person from the 900 subjects in this study, what is the probability that the person exhibits the minimum BMI?
Clara usually walks briskly to the farmers' market and it takes her 22 minutes. Today she walked leisurely and it took 61/2 minutes. How much more time than usual did she take to reach the market today?
(24, -7) is on the terminal arm of an angle in standard position. Determine the exact values of the primary trigonometric functions.
Calculate the boiling temperature and freezing temperature at 1 atmosphere pressure of a solution formed by dissolving 123 grams of ferrous oxide in 1.890 grams of HCl.
In the telephone exchange of a certain university, calls come in at a rate of 5 every 2 minutes. Assuming a Poisson distribution, the average number of calls per second is: a) 1/8 b) 1/12 c) 1/10 d) 2/5 e) 1/24
Convert 9/13 to a percent
The function h(t)=-5t^2+20t+60 models the height in meters of a ball t seconds after it’s thrown . Which describe the intercepts and vertex of this function
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) − f(p)| ≤ M|g(x) − g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
Calculate the area of the parallelogram with adjacent vertices (1,4, −2), (−3,1,6) 𝑦 (1, −2,3)
On Tuesday Shanice bought five hats.On Wednesday half of all the hats that she had were destroyed.On Thursday there were only 17 left.How many Did she have on Monday.
Consider the function f(x)=1/2(x+1)^2-3. Use the preceding/following interval method to estimate the instantaneous rate of change at 𝑥 = 1.
if y=1/w^2 yw=2-x; find dy/dx
To paint a 250 m wall, a number of workers were employed. If the wall were 30 m longer, 9 more workers would be needed. How many were employed at the beginning?