Question

In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?

125

likes
626 views

Answer to a math question In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?

Expert avatar
Tiffany
4.5
103 Answers
Para encontrar la fracción de árboles de cada tipo de frutal, primero necesitamos saber cuántas filas hay en total.

Dado que hay 360 árboles y cada fila tiene el mismo número de árboles, podemos encontrar el número de filas dividiendo el total de árboles entre el número de árboles en cada fila.

\text{Número de filas} = \frac{360}{\text{Árboles por fila}}

Como hay 9 filas y cada una tiene el mismo número de árboles, podemos determinar el número de árboles en cada fila dividiendo el total de árboles entre el número de filas.

\text{Árboles por fila} = \frac{360}{\text{Número de filas}}

Ahora que sabemos el número de filas y el número de árboles por fila, podemos determinar la fracción de árboles de cada tipo de frutal.

Las 2 filas de naranjos representan \frac{2}{\text{Número de filas}} de los árboles totales.

Las 4 filas de manzanos representan \frac{4}{\text{Número de filas}} de los árboles totales.

Y el resto de filas (que son de perales) representan \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} de los árboles totales.

Ahora podemos calcular el número de árboles de cada tipo multiplicando la fracción por el total de árboles.

Árboles de naranjos: \frac{2}{\text{Número de filas}} \times 360

Árboles de manzanos: \frac{4}{\text{Número de filas}} \times 360

Árboles de perales: \left( \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} \right) \times 360

Finalmente, podemos simplificar las fracciones, calcular el número de filas y sustituir los valores para encontrar el número de árboles de cada tipo y su fracción correspondiente.

Respuesta:

Número de filas: \text{Número de filas} = \frac{360}{\text{Árboles por fila}} = \frac{360}{\frac{360}{9}} = 9

Árboles por fila: \text{Árboles por fila} = \frac{360}{\text{Número de filas}} = \frac{360}{9} = 40

Árboles de naranjos: \frac{2}{\text{Número de filas}} \times 360 = \frac{2}{9} \times 360 = 80

Árboles de manzanos: \frac{4}{\text{Número de filas}} \times 360 = \frac{4}{9} \times 360 = 160

Árboles de perales: \left( \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} \right) \times 360 = \left( \frac{9 - 2 - 4}{9} \right) \times 360 = \frac{3}{9} \times 360 =120

Por lo tanto, la fracción de los árboles del huerto que son de cada tipo de frutal es:

Naranjos: \frac{80}{360} = \frac{2}{9}

Manzanos: \frac{160}{360} = \frac{4}{9}

Peras: \frac{120}{360} = \frac{3}{9} = \frac{1}{3}

En el huerto hay:

80 árboles de naranjos

160 árboles de manzanos

120 árboles de perales

Frequently asked questions (FAQs)
Question: Find the derivative of the function f(x) = ∫[a to x] t^2 dt.
+
What is the probability of rolling a 4 or a multiple of 3 on a fair six-sided die?
+
Math question: In triangle ABC, if angle A = angle B and AB = AC, which congruence rule can be applied?
+
New questions in Mathematics
5 . {2/5 + [ (8/-9) - (1/-7) + (-2/5) ] ÷ (2/-5)} . 8/15
A hotel in the Algarve had to offer 1 week of vacation to one of its employees as an Easter gift in a random choice. It is known that 80 people work in this hotel unit, 41 of whom are Portuguese and 39 are foreign nationals. There are 14 Portuguese men and 23 foreign women. Using what you know about conditional probability, check the probability that the gift was offered to a Portuguese citizen, knowing that it was a woman.
STUDENTS IN A CLASS LEARN ONLY ONE FOREIGN LANGUAGE. two-sevenths of the students learn German, half of the students learn Spanish, and the remaining six students learn Italian. what is the number of students in this class? detail your reasoning carefully.
Calculate the equation of the tangent line ay=sin(x) cos⁡(x)en x=π/2
Divide 22 by 5 solve it by array and an area model
How many different ways can a psychology student select 5 subjects from a pool of 20 subjects and assign each one to a different experiment?
-27=-7u 5(u-3)
Determine the minimum degree that an algebraic equation can assume knowing that it admits 2 as a double root and -i as a triple root
Calculate the minimum size of a simple random sample assuming a sampling error of 5% assuming that the population size is 100 elements
There are 3 orchards, a, b and c. Orchard a has 60 fewer trees than orchard b orchard c has 3 times as many trees as orchard b. If the three orchards have 430 trees altogether, how many trees does orchard c have?
Use a pattern approach to explain why (-2)(-3)=6
9 x² + 2x + 1 = 0
9.25=2pi r solve for r
A car travels 211 miles on 15 gallons of gasoline. The best estimate of the car’s miles per gallon is?
How to factorise 5y^2 -7y -52
In poker, a full house consists of five cards, where two of the cards have the same number (or letter) and the remaining three also have the same number (or letter) as each other (but not as the previous two cards). Use a search engine or Wikipedia to understand the concept better if necessary. In how many different ways can one obtain a full house?
Find the vertex F(x)=x^2-10x
The average weekly earnings in the leisure and hospitality industry group for a re‐ cent year was $273. A random sample of 40 workers showed weekly average ear‐ nings of $285 with the population standard deviation equal to 58. At the 0.05 level of significance can it be concluded that the mean differs from $273? Find a 95% con‐ fidence interval for the weekly earnings and show that it supports the results of the hypothesis test.
To paint a 250 m wall, a number of workers were employed. If the wall were 30 m longer, 9 more workers would be needed. How many were employed at the beginning?
Kayla started a book club at her school. The number of girls in the book club was one more than twice the number of boys. If there are 15 girls in the book club, how many boys are in the club?