Question

In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?

125

likes
626 views

Answer to a math question In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?

Expert avatar
Tiffany
4.5
103 Answers
Para encontrar la fracción de árboles de cada tipo de frutal, primero necesitamos saber cuántas filas hay en total.

Dado que hay 360 árboles y cada fila tiene el mismo número de árboles, podemos encontrar el número de filas dividiendo el total de árboles entre el número de árboles en cada fila.

\text{Número de filas} = \frac{360}{\text{Árboles por fila}}

Como hay 9 filas y cada una tiene el mismo número de árboles, podemos determinar el número de árboles en cada fila dividiendo el total de árboles entre el número de filas.

\text{Árboles por fila} = \frac{360}{\text{Número de filas}}

Ahora que sabemos el número de filas y el número de árboles por fila, podemos determinar la fracción de árboles de cada tipo de frutal.

Las 2 filas de naranjos representan \frac{2}{\text{Número de filas}} de los árboles totales.

Las 4 filas de manzanos representan \frac{4}{\text{Número de filas}} de los árboles totales.

Y el resto de filas (que son de perales) representan \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} de los árboles totales.

Ahora podemos calcular el número de árboles de cada tipo multiplicando la fracción por el total de árboles.

Árboles de naranjos: \frac{2}{\text{Número de filas}} \times 360

Árboles de manzanos: \frac{4}{\text{Número de filas}} \times 360

Árboles de perales: \left( \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} \right) \times 360

Finalmente, podemos simplificar las fracciones, calcular el número de filas y sustituir los valores para encontrar el número de árboles de cada tipo y su fracción correspondiente.

Respuesta:

Número de filas: \text{Número de filas} = \frac{360}{\text{Árboles por fila}} = \frac{360}{\frac{360}{9}} = 9

Árboles por fila: \text{Árboles por fila} = \frac{360}{\text{Número de filas}} = \frac{360}{9} = 40

Árboles de naranjos: \frac{2}{\text{Número de filas}} \times 360 = \frac{2}{9} \times 360 = 80

Árboles de manzanos: \frac{4}{\text{Número de filas}} \times 360 = \frac{4}{9} \times 360 = 160

Árboles de perales: \left( \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} \right) \times 360 = \left( \frac{9 - 2 - 4}{9} \right) \times 360 = \frac{3}{9} \times 360 =120

Por lo tanto, la fracción de los árboles del huerto que son de cada tipo de frutal es:

Naranjos: \frac{80}{360} = \frac{2}{9}

Manzanos: \frac{160}{360} = \frac{4}{9}

Peras: \frac{120}{360} = \frac{3}{9} = \frac{1}{3}

En el huerto hay:

80 árboles de naranjos

160 árboles de manzanos

120 árboles de perales

Frequently asked questions (FAQs)
What are the x-values that make f(x) = tan(x) undefined?
+
What conditions should be met to establish the congruence of two triangles?
+
What is the amplitude of the tangent function f(x) = tan x?
+
New questions in Mathematics
calculate the derivative by the limit definition: f(x) = 6x^3 + 2
Solution of the equation y'' - y' -6y = 0
find the value of the tangent if it is known that the cos@= 1 2 and the sine is negative. must perform procedures.
-8+3/5
The random variable Y is defined as the sum between two different integers selected at random between -4 and 2 (both included). What are the possible values of the random variable Y? What is the value of P(Y=-3)? And whether it is less than or equal to -5?
A drawer contains three pairs of white socks, five pairs of black socks and two pairs of red socks. Caden randomly selects two pairs of socks on his way to the gym. What is the probability that both pairs of socks are black?
A juice shop prepares assorted juices, for their juices they have 5 different types of fruit. How many types of assortments can be prepared in total, if it is considered an assortment to a juice made with two or more fruits?
Find the root of x^4-10x^ 5=0 using Newton's method, with a precision of the smallest positive root.
The function g:Q→Q is a ring homomorphism such that g(3)=3 and g(5)=5. What are the values of g(8) and g(9)?
Find the equation of the line perpendicular to −5𝑥−3𝑦+5=0 passing through the point (0,−2)
Substitute a=2 and b=-3 and c=-4 to evaluate 2ac/(-2b^2-a)
form a key for your lock containing the numbers 2 2 5 8 How many different keys can you form?
Calculate the boiling temperature and freezing temperature at 1 atmosphere pressure of a solution formed by dissolving 123 grams of ferrous oxide in 1.890 grams of HCl.
How many square feet of floor area are there in three two-storey apartment houses, each of which is 38 feet wide and 76 feet long?
How to do 15 x 3304
At the dance there are 150 boys the rest are girls. If 65% are girls what is the total amount in the room
Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π). cos30=0
In poker, a full house consists of five cards, where two of the cards have the same number (or letter) and the remaining three also have the same number (or letter) as each other (but not as the previous two cards). Use a search engine or Wikipedia to understand the concept better if necessary. In how many different ways can one obtain a full house?
7-1=6 6x2=12 Explain that
A grain silo has a height of 8.8m with a 11.4m diameter. If it is filled 0.5% of it's volume, how much grain (m^3) is stored in the silo? (0 decimal places)