Question

In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?

125

likes
626 views

Answer to a math question In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?

Expert avatar
Tiffany
4.5
96 Answers
Para encontrar la fracción de árboles de cada tipo de frutal, primero necesitamos saber cuántas filas hay en total.

Dado que hay 360 árboles y cada fila tiene el mismo número de árboles, podemos encontrar el número de filas dividiendo el total de árboles entre el número de árboles en cada fila.

\text{Número de filas} = \frac{360}{\text{Árboles por fila}}

Como hay 9 filas y cada una tiene el mismo número de árboles, podemos determinar el número de árboles en cada fila dividiendo el total de árboles entre el número de filas.

\text{Árboles por fila} = \frac{360}{\text{Número de filas}}

Ahora que sabemos el número de filas y el número de árboles por fila, podemos determinar la fracción de árboles de cada tipo de frutal.

Las 2 filas de naranjos representan \frac{2}{\text{Número de filas}} de los árboles totales.

Las 4 filas de manzanos representan \frac{4}{\text{Número de filas}} de los árboles totales.

Y el resto de filas (que son de perales) representan \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} de los árboles totales.

Ahora podemos calcular el número de árboles de cada tipo multiplicando la fracción por el total de árboles.

Árboles de naranjos: \frac{2}{\text{Número de filas}} \times 360

Árboles de manzanos: \frac{4}{\text{Número de filas}} \times 360

Árboles de perales: \left( \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} \right) \times 360

Finalmente, podemos simplificar las fracciones, calcular el número de filas y sustituir los valores para encontrar el número de árboles de cada tipo y su fracción correspondiente.

Respuesta:

Número de filas: \text{Número de filas} = \frac{360}{\text{Árboles por fila}} = \frac{360}{\frac{360}{9}} = 9

Árboles por fila: \text{Árboles por fila} = \frac{360}{\text{Número de filas}} = \frac{360}{9} = 40

Árboles de naranjos: \frac{2}{\text{Número de filas}} \times 360 = \frac{2}{9} \times 360 = 80

Árboles de manzanos: \frac{4}{\text{Número de filas}} \times 360 = \frac{4}{9} \times 360 = 160

Árboles de perales: \left( \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} \right) \times 360 = \left( \frac{9 - 2 - 4}{9} \right) \times 360 = \frac{3}{9} \times 360 =120

Por lo tanto, la fracción de los árboles del huerto que son de cada tipo de frutal es:

Naranjos: \frac{80}{360} = \frac{2}{9}

Manzanos: \frac{160}{360} = \frac{4}{9}

Peras: \frac{120}{360} = \frac{3}{9} = \frac{1}{3}

En el huerto hay:

80 árboles de naranjos

160 árboles de manzanos

120 árboles de perales

Frequently asked questions (FAQs)
What is the magnitude and direction of the unit vector formed by the components (3, 4)
+
Question: What is the product of two integers whose sum is 15 and whose product is 56?
+
What is the radius of a circle function with equation x^2 + y^2 = 25?
+
New questions in Mathematics
8x²-30x-10x²+70x=-30x+10x²-20x²
what is 3% of 105?
90 divided by 40
Calculate the equation of the tangent line ay=sin(x) cos⁡(x)en x=π/2
5) A family with a father, mother and 3 children must sit on five chairs in a row and the only restriction is that the mother must be at one end. In how many different ways can they be seated?
solve the following trigo equation for 0°<= x <= 360°. sec x =-2
A company is wondering whether to invest £18,000 in a project which would make extra profits of £10,009 in the first year, £8,000 in the second year and £6,000 in the third year. It’s cost of capital is 10% (in other words, it would require a return of at least 10% on its investment). You are required to evaluate the project.
The data set (75, 85, 58, 72, 70, 75) is a random sample from the normal distribution No(µ, σ). Determine a 95% two-sided confidence interval for the mean µ .
Two numbers differ by 7, and the sum of their squares is 29. Find the numbers.
Find the measures of the sides of ∆KPL and classify each triangle by its sides k (-2,-6), p (-4,0), l (3,-1)
(-5/6)-(-5/4)
Credit title that represents a payment order. This model, which emerged in Brazil, can only be issued in two specific situations: in the purchase and sale of commercial products or in the provision of services. Select the correct alternative: Question 6Answer The. Present value B. Promissory note w. Present value d. Duplicate It is. Bill of exchange
3+7
Find the minimum value of the function y = -4 x3 + 60 x2 -252 x + 8 for values of x between x = 0 and x = 9 Enter the value of the function, not the value of x
We have received our p&l statement back from accounts. The board has asked for an innovation hub. What items should we prioritise reviewing to decide if we can afford an innovation hub?
2x2
Let x be an integer. Prove that x^2 is even if and only if is divisible by 4.
Find the area of a triangle ABC when m<C = 14 degrees, a = 5.7 miles, and b = 9.3 miles.
did an analysis of dropout from the nursing faculty at the Universidad Veracruzana. With a poblation of 122 students, it turned out that according to the gender data, the female sex predominates with 82%, and the male sex male is found with 12%. The main factors why students drop out are, first of all, "Not "re-enrolled" at 49%, second place "Personal reasons" at 20%, third place "change of school" in 11%, "lack of documents" and "economic reasons" in 7%, change of residence and lack of social service in 3%. Of this sample, how many students dropped out for other reasons?
Sodium 38.15 38.78 38.5 38.65 38.79 38.89 38.57 38.59 38.59 38.8 38.63 38.43 38.56 38.46 38.79 38.42 38.74 39.12 38.5 38.42 38.57 38.37 38.71 38.71 38.4 38.56 38.39 38.34 39.04 38.8 A supplier of bottled mineral water claims that his supply of water has an average sodium content of 36.6 mg/L. The boxplot below is of the sodium contents levels taken from a random sample of 30 bottles. With this data investigate the claim using SPSS to apply the appropriate test. Download the data and transfer it into SPSS. Check that your data transfer has been successful by obtaining the Std. Error of the mean for your data which should appear in SPSS output as 0.03900.. If you do not have this exact value, then you may have not transferred your data from the Excel file to SPSS correctly. Do not continue with the test until your value agrees as otherwise you may not have correct answers. Unless otherwise directed you should report all numeric values to the accuracy displayed in the SPSS output that is supplied when your data has been transferred correctly. In the following questions, all statistical tests should be carried out at the 0.05 significance level. Sample mean and median Complete the following concerning the mean and median of the data. mean =  mg/L 95% CI:  to  mg/L Based upon the 95% confidence interval, is it plausible that the average sodium content is 36.9 mg/L?      median:  mg/L The median value is      36.9 mg/L. Skewness Complete the following concerning the skewness of the data. Skewness statistic =        Std. Error =  The absolute value of the skewness statistic     less than 2 x Std. Error Therefore the data can be considered to come from a population that is      . Normality test Complete the following summary concerning the formal testing of the normality of the data. H0: The data come from a population that     normal H1: The data come from a population that     normal Application of the Shapiro-Wilk test indicated that the normality assumption     reasonable for sodium content (S-W(  )=  , p=   ). Main test Using the guidelines you have been taught that consider sample size, skewness and normality, choose and report the appropriate main test from the following ( Appropriate ONE ) You have selected that you wish to report the one-sample t-test. H0: The mean sodium content     equal to 36.9 mg/L H1: The mean sodium content     equal to 36.9 mg/L Application of the one-sample t-test indicated that the mean is      36.9 mg/L (t(  ) =  , p =   ). You have selected that you wish to report the Wilcoxon signed rank test. H0: The median sodium content     equal to 36.9 mg/L H1: The median sodium content     equal to 36.9 mg/L Application of the Wilcoxon signed rank test indicated that the median is      36.9 mg/L (z =  , N =  , p =   ).