Question

In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?

125

likes
626 views

Answer to a math question In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?

Expert avatar
Tiffany
4.5
103 Answers
Para encontrar la fracción de árboles de cada tipo de frutal, primero necesitamos saber cuántas filas hay en total.

Dado que hay 360 árboles y cada fila tiene el mismo número de árboles, podemos encontrar el número de filas dividiendo el total de árboles entre el número de árboles en cada fila.

\text{Número de filas} = \frac{360}{\text{Árboles por fila}}

Como hay 9 filas y cada una tiene el mismo número de árboles, podemos determinar el número de árboles en cada fila dividiendo el total de árboles entre el número de filas.

\text{Árboles por fila} = \frac{360}{\text{Número de filas}}

Ahora que sabemos el número de filas y el número de árboles por fila, podemos determinar la fracción de árboles de cada tipo de frutal.

Las 2 filas de naranjos representan \frac{2}{\text{Número de filas}} de los árboles totales.

Las 4 filas de manzanos representan \frac{4}{\text{Número de filas}} de los árboles totales.

Y el resto de filas (que son de perales) representan \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} de los árboles totales.

Ahora podemos calcular el número de árboles de cada tipo multiplicando la fracción por el total de árboles.

Árboles de naranjos: \frac{2}{\text{Número de filas}} \times 360

Árboles de manzanos: \frac{4}{\text{Número de filas}} \times 360

Árboles de perales: \left( \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} \right) \times 360

Finalmente, podemos simplificar las fracciones, calcular el número de filas y sustituir los valores para encontrar el número de árboles de cada tipo y su fracción correspondiente.

Respuesta:

Número de filas: \text{Número de filas} = \frac{360}{\text{Árboles por fila}} = \frac{360}{\frac{360}{9}} = 9

Árboles por fila: \text{Árboles por fila} = \frac{360}{\text{Número de filas}} = \frac{360}{9} = 40

Árboles de naranjos: \frac{2}{\text{Número de filas}} \times 360 = \frac{2}{9} \times 360 = 80

Árboles de manzanos: \frac{4}{\text{Número de filas}} \times 360 = \frac{4}{9} \times 360 = 160

Árboles de perales: \left( \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} \right) \times 360 = \left( \frac{9 - 2 - 4}{9} \right) \times 360 = \frac{3}{9} \times 360 =120

Por lo tanto, la fracción de los árboles del huerto que son de cada tipo de frutal es:

Naranjos: \frac{80}{360} = \frac{2}{9}

Manzanos: \frac{160}{360} = \frac{4}{9}

Peras: \frac{120}{360} = \frac{3}{9} = \frac{1}{3}

En el huerto hay:

80 árboles de naranjos

160 árboles de manzanos

120 árboles de perales

Frequently asked questions (FAQs)
What is the limit of f(x) = (2x^3 - 5x^2 + 3) / (x^2 + 1) as x approaches infinity?
+
What number must be inserted in a set of numbers {10, 8, ?, 13, 16} to make the median equal to 12?
+
Math question: Find the amplitude, period, and y-intercept of the cosine function f(x) = cos x.
+
New questions in Mathematics
A circle with a 12-inch diameter is folded in half and then folded in half again. What is the area of the resulting shape?
3(4×-1)-2(×+3)=7(×-1)+2
2/3+5/6×1/2
Find the equation of the line perpendicular to −5𝑥−3𝑦+5=0 passing through the point (0,−2)
The average number of babies born at a hospital is 6 per hour. What is the probability that three babies are born during a particular 1 hour period?
Solve : 15/16 divide 12/8 =x/y
It is known that the content of milk that is actually in a bag distributes normally with an average of 900 grams and variance 25 square grams. Suppose that the cost in pesos of a bag of milk is given by 𝐶(𝑥) = { 3800 𝑠𝑖 𝑥 ≤ 890 4500 𝑠𝑖 𝑥 > 890 Find the expected cost.
Convert 5/9 to a decimal
Use linear approximation to estimate the value of the sine of 31o.
X³-27
Solve equations by equalization method X-8=-2y 2x+y=7
Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.
cube root of 56
17. A loan for $104259 is taken out for 10 years with an annual interest rate of 9.4%, compounded quarterly. What quarterly payment is required to pay the loan off in 10 years? Enter to the nearest cent (two decimals). Do not use $ signs or commas in the answer.
What is the value of f(-3) for the function X squared+5x-8=
A 20,000 kg school bus is moving at 30 km per hour on a straight road. At that moment, it applies the brakes until it comes to a complete stop after 15 seconds. Calculate the acceleration and the force acting on the body.
00 piece jigsaw puzzle. the completed puzzle is 10x10. each piech connects to at least 2 other pieces. i plan to assemble by taking pieces out of box one by one. if i've already taken out 2 pieces that dont directly connect, what is the minimum number of additional pieces that i need to draw to in order to guarentee that the original 2 pieces connect?
A 20-year old hopes to retire by age 65. To help with future expenses, they invest $6 500 today at an interest rate of 6.4% compounded annually. At age 65, what is the difference between the exact accumulated value and the approximate accumulated value (using the Rule of 72)?
simplify w+[6+(-5)]
Question 3 A square has a perimeter given by the algebraic expression 24x – 16. Write the algebraic expression that represents one of its sides.