Question

In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?

125

likes
626 views

Answer to a math question In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?

Expert avatar
Tiffany
4.5
102 Answers
Para encontrar la fracción de árboles de cada tipo de frutal, primero necesitamos saber cuántas filas hay en total.

Dado que hay 360 árboles y cada fila tiene el mismo número de árboles, podemos encontrar el número de filas dividiendo el total de árboles entre el número de árboles en cada fila.

\text{Número de filas} = \frac{360}{\text{Árboles por fila}}

Como hay 9 filas y cada una tiene el mismo número de árboles, podemos determinar el número de árboles en cada fila dividiendo el total de árboles entre el número de filas.

\text{Árboles por fila} = \frac{360}{\text{Número de filas}}

Ahora que sabemos el número de filas y el número de árboles por fila, podemos determinar la fracción de árboles de cada tipo de frutal.

Las 2 filas de naranjos representan \frac{2}{\text{Número de filas}} de los árboles totales.

Las 4 filas de manzanos representan \frac{4}{\text{Número de filas}} de los árboles totales.

Y el resto de filas (que son de perales) representan \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} de los árboles totales.

Ahora podemos calcular el número de árboles de cada tipo multiplicando la fracción por el total de árboles.

Árboles de naranjos: \frac{2}{\text{Número de filas}} \times 360

Árboles de manzanos: \frac{4}{\text{Número de filas}} \times 360

Árboles de perales: \left( \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} \right) \times 360

Finalmente, podemos simplificar las fracciones, calcular el número de filas y sustituir los valores para encontrar el número de árboles de cada tipo y su fracción correspondiente.

Respuesta:

Número de filas: \text{Número de filas} = \frac{360}{\text{Árboles por fila}} = \frac{360}{\frac{360}{9}} = 9

Árboles por fila: \text{Árboles por fila} = \frac{360}{\text{Número de filas}} = \frac{360}{9} = 40

Árboles de naranjos: \frac{2}{\text{Número de filas}} \times 360 = \frac{2}{9} \times 360 = 80

Árboles de manzanos: \frac{4}{\text{Número de filas}} \times 360 = \frac{4}{9} \times 360 = 160

Árboles de perales: \left( \frac{\text{Número de filas} - 2 - 4}{\text{Número de filas}} \right) \times 360 = \left( \frac{9 - 2 - 4}{9} \right) \times 360 = \frac{3}{9} \times 360 =120

Por lo tanto, la fracción de los árboles del huerto que son de cada tipo de frutal es:

Naranjos: \frac{80}{360} = \frac{2}{9}

Manzanos: \frac{160}{360} = \frac{4}{9}

Peras: \frac{120}{360} = \frac{3}{9} = \frac{1}{3}

En el huerto hay:

80 árboles de naranjos

160 árboles de manzanos

120 árboles de perales

Frequently asked questions (FAQs)
What is the area of a triangle with base length 10 units, height 8 units?
+
Math question: What is the probability of choosing a red ball from a bag containing 5 red, 3 blue, and 2 green balls?
+
Math Question: Find the length of the hypotenuse in a right triangle with legs measuring 5 cm and 12 cm.
+
New questions in Mathematics
calculate the derivative by the limit definition: f(x) = 6x^3 + 2
Find an arc length parameterization of the curve that has the same orientation as the given curve and for which the reference point corresponds to t=0. Use an arc length s as a parameter. r(t) = 3(e^t) cos (t)i + 3(e^t)sin(t)j; 0<=t<=(3.14/2)
𝑦 = ( 𝑥2 − 3) (𝑥3 + 2 𝑥 + 1)
Investing equal amounts of money into each of five business ventures Let&#39;s say you plan. 20 to choose from If there are initiatives, how many different ones among 20 initiatives? five startups can be selected?
Suppose a large shipment of cell phones contain 21% defective. If the sample of size 204 is selected, what is the probability that the sample proportion will differ from the population proportion by less than 4% round your answer to four decimal places
A regional candy factory sells a guava roll at a price of $48, the monthly fixed costs amount to $125,000 and the variable cost for making a guava roll is $28. Determine: a) The equation of the total income from the production of guava rolls.
How long will it take for $900 to become $5000 at an annual rate of 11.15% compounded bimonthly?
If f(x,y)=6xy^2+3y^3 find (∫3,-2) f(x,y)dx.
-3(-4x+5)=-6(7x-8)+9-10x
2x+4x=
Calculate the value of a so that the vectors (2,2,−1),(3,4,2) and(a,2,3) are coplanar.
Exercise 1 An ejidal association wishes to determine the distribution for the three different crops that it can plant for the next season on its available 900 hectares. Information on the total available and how many resources are required for each hectare of cultivation is shown in the following tables: Total available resource Water 15,000 m3 Fertilizer 5,000 kg Labor 125 day laborers Requirements per cultivated hectare Corn Soybeans Wheat Water 15 25 20 Fertilizer 5 8 7 Labor** 1/8 1/5 1/4 *The data in fraction means that with one day laborer it will be possible to care for 8, 5 and 4 hectares respectively. * Sales of crops 1 and 3, according to information from the Department of Agriculture, are guaranteed and exceed the capacity of the cooperative. However, soybeans must be limited to a maximum of 150 hectares. On the other hand, the profits for each hectare of crop obtained are estimated at: $7,500 for corn, $8,500 for soybeans and $8,000 for wheat. The objectives are to determine: • How many hectares of each crop must be allocated so that the profit is maximum. R= • The estimated profits for the ejidal cooperative in the next growing season. R=
Use a pattern approach to explain why (-2)(-3)=6
If the regression equation is given by 4x –y + 5 = 0, then the slope of regression line of y on x is
X~N(2.6,1.44). find the P(X<3.1)
A hardware bill totals $857.63 with discounts of 5% and 3%. What is the net cost of the Material ?
A diamond ring was reduced from $999.99 to $689.99. Find the percent reduction in the price. Round the answer to the nearest tenth of a percent, if necessary.
(6²-14)÷11•(-3)
2 - 6x = -16x + 28
An invoice for €2,880 plus default interest of €48.40 was paid on October 28th. Interest rate 5.5%. When was the bill due?