**Given:**
Angular frequency, \omega = 6.8 \, \text{rad/s}
Wave number, k = 4 \, \text{m}^{-1}
Phase constant, \phi = \frac{\pi}{4} \, \text{rad}
**Formulas:**
1. Period, T = \frac{2\pi}{\omega}
2. Frequency, f = \frac{1}{T}
3. Wavelength, \lambda = \frac{2\pi}{k}
4. Transverse velocity, v = \omega \cdot A
5. Equation of transverse position of the wave, y(x, t) = A \cdot \cos(kx - \omega t + \phi)
6. Maximum transverse velocity, v_{\text{max}} = \omega \cdot A = 6.8m/s
7. Maximum acceleration, a_{\text{max}} = \omega^2 \cdot A =46.24 m/s^2
**Solution:**
1. Calculate Period:
T=\frac{2\pi}{\omega}=\frac{2\pi}{6.8}\approx0.9239\,\text{s}
2. Calculate Frequency:
f=\frac{1}{T}=\frac{1}{0.9239}\approx1.08\,\text{Hz}
3. Calculate Wavelength:
\lambda = \frac{2\pi}{k} = \frac{2\pi}{4} = \frac{\pi}{2} \, \text{m}
4. Calculate Transverse Velocity:
v = \omega \cdot A
5. Equation of Transverse Position of the Wave:
y(x, t) = A \cdot \cos(kx - \omega t + \phi)
6. Calculate Maximum Transverse Velocity:
v_{\text{max}}=6.8
7. Calculate Maximum Acceleration:
a_{\text{max}}=46.24
**Answers:**
1. Period T = 0.9259 \, \text{s}
2. Frequency f = 1.08 \, \text{Hz}
3. Wavelength \lambda = \frac{\pi}{2} \, \text{m}
4. Transverse velocity v = \omega \cdot A
5. Equation of transverse position of the wave y(x,t)=\cos(4x-6.8t+\frac{\pi}{4})
6. Maximum transverse velocity v_{\text{max}}=6.8
7. Maximum acceleration a_{\text{max}}=46.24