Solution:
1. Add the real parts:
- Real part of the first complex number: \frac{4}{5}
- Real part of the second complex number: \frac{2}{3}
- Sum of the real parts: \frac{4}{5} + \frac{2}{3} = \frac{4 \times 3 + 5 \times 2}{5 \times 3} = \frac{12 + 10}{15} = \frac{22}{15}
2. Add the imaginary parts:
- Imaginary part of the first complex number: -\frac{2}{4}i = -\frac{1}{2}i
- Imaginary part of the second complex number: \frac{6}{9}i = \frac{2}{3}i
- Sum of the imaginary parts: -\frac{1}{2}i + \frac{2}{3}i
- Common denominator for imaginary sum is 6:
-\frac{1 \times 3}{2 \times 3}i + \frac{2 \times 2}{3 \times 2}i = -\frac{3}{6}i + \frac{4}{6}i = \frac{1}{6}i
3. Combine the results:
- Resulting complex number: \frac{22}{15} + \frac{1}{6}i