Question

P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

297

likes
1484 views

Answer to a math question P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

Expert avatar
Gene
4.5
108 Answers
Pour montrer que les lignes perpendiculaires tracĂ©es depuis les sommets d’un carrĂ© vers les cĂŽtĂ©s opposĂ©s sont concourantes en un point Ă  l’intĂ©rieur du carrĂ©, nous pouvons utiliser la rotation gĂ©omĂ©trique. ConsidĂ©rons un carrĂ© ABCD contenant un point P. Nous montrerons que les droites perpendiculaires tracĂ©es respectivement de A, B, C et D vers BP, CP, DP et AP se coupent en un seul point. 1. Dessinez le segment de droite AP et construisez une ligne perpendiculaire de A Ă  BP. Appelons X l'intersection de cette ligne perpendiculaire et de BP. 2. Effectuons maintenant une rotation du carrĂ© de 90 degrĂ©s dans le sens des aiguilles d'une montre autour du point A. Cette rotation mappe le point B au point C, le point C au point D et le point D au point P. Le segment de droite BP est mappĂ© au segment de droite. CP. 3. AprĂšs la rotation, la droite perpendiculaire de C Ă  CP coĂŻncide avec la droite perpendiculaire d’origine de B Ă  BP. Par consĂ©quent, le carrĂ© pivotĂ© ABCD a la mĂȘme propriĂ©té : les droites perpendiculaires allant de B, C et D Ă  CP, DP et AP, respectivement, se coupent Ă©galement au point X. 4. RĂ©pĂ©tez le processus pour les sommets restants du carrĂ©. Effectuez successivement des rotations de 90 degrĂ©s dans le sens des aiguilles d’une montre autour des points B, C et D. Chaque rotation mappe le carrĂ© sur lui-mĂȘme et prĂ©serve la propriĂ©tĂ© des lignes perpendiculaires concurrentes. Par consĂ©quent, les lignes perpendiculaires allant de A, B, C et D Ă  BP, CP, DP et AP, respectivement, se coupent toutes au point X, qui est le point d'intersection de toutes les lignes perpendiculaires pivotĂ©es. Ainsi, nous avons montrĂ© que les lignes perpendiculaires tracĂ©es depuis les sommets A, B, C et D du carrĂ© jusqu’aux cĂŽtĂ©s opposĂ©s BP, CP, DP et AP, respectivement, sont concourantes en un point Ă  l’intĂ©rieur du carrĂ©.

Frequently asked questions (FAQs)
Math question: What is the prime factorization of 144?
+
What is the measure of an angle with its supplement measuring 140°?
+
Find the unknown angle α in a triangle with sides a = 4, b = 7, and angle ÎČ = 40°.
+
New questions in Mathematics
What is the amount of interest of 75,000 at 3.45% per year, at the end of 12 years and 6 months?
Find the equation of the normal to the curve y=xÂČ+4x-3 at point(1,2)
Exercise 4 - the line (AC) is perpendicular to the line (AB) - the line (EB) is perpendicular to the line (AB) - the lines (AE) and (BC) intersect at D - AC = 2.4 cm; BD = 2.5 cm: DC = 1.5 cm Determine the area of triangle ABE.
58+861-87
4.2x10^_6 convert to standard notation
What is the r.p.m. required to drill a 13/16" hole in mild steel if the cutting speed is 100 feet per minute?
You are planning to buy a car worth $20,000. Which of the two deals described below would you choose, both with a 48-month term? (NB: estimate the monthly payment of each offer). i) the dealer offers to take 10% off the price, then lend you the balance at an annual percentage rate (APR) of 9%, monthly compounding. ii) the dealer offers to lend you $20,000 (i.e., no discount) at an APR of 3%, monthly compounding.
If f(x,y)=6xy^2+3y^3 find (∫3,-2) f(x,y)dx.
prove that if n odd integer then n^2+5 is even
20% of 3500
What’s the slope of a tangent line at x=1 for f(x)=x2. We can find the slopes of a sequence of secant lines that get closer and closer to the tangent line. What we are working towards is the process of finding a “limit” which is a foundational topic of calculus.
Use a pattern to prove that (-2)-(-3)=1
TEST 123123+1236ttttt
In a company dedicated to packaging beer in 750 mL containers, a normal distribution is handled in its packaging process, which registers an average of 745 mL and a standard deviation of 8 mL. Determine: a) The probability that a randomly selected container exceeds 765 mL of beer b) The probability that the beer content of a randomly selected container is between 735 and 755 mL.
The mass of 120 molecules of X2C4 is 9127.2 amu. Identify the unknown atom, X, by finding the atomic mass. The atomic mass of C is 12.01 amu/atom
Translate to an equation and solve. Let x be the unknown number: What number is 52% of 81.
Emile organizes a community dance to raise funds. In addition to paying $300 to rent the room, she must rent chairs at $2 each. The quantity of chairs rented will be equal to the number of tickets sold. She sells tickets for $7 each. How much should she sell to raise money?
Find the symmetric point to a point P = (2,-7,10) with respect to a plane containing a point Po = (3, 2, 2) and perpendicular to a vector u = [1, -3, 2].
g(x)=3(x+8). What is the value of g(12)
15=5(x+3)