Question

P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

297

likes
1484 views

Answer to a math question P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

Expert avatar
Gene
4.5
98 Answers
Pour montrer que les lignes perpendiculaires tracées depuis les sommets d’un carré vers les côtés opposés sont concourantes en un point à l’intérieur du carré, nous pouvons utiliser la rotation géométrique. Considérons un carré ABCD contenant un point P. Nous montrerons que les droites perpendiculaires tracées respectivement de A, B, C et D vers BP, CP, DP et AP se coupent en un seul point. 1. Dessinez le segment de droite AP et construisez une ligne perpendiculaire de A à BP. Appelons X l'intersection de cette ligne perpendiculaire et de BP. 2. Effectuons maintenant une rotation du carré de 90 degrés dans le sens des aiguilles d'une montre autour du point A. Cette rotation mappe le point B au point C, le point C au point D et le point D au point P. Le segment de droite BP est mappé au segment de droite. CP. 3. Après la rotation, la droite perpendiculaire de C à CP coïncide avec la droite perpendiculaire d’origine de B à BP. Par conséquent, le carré pivoté ABCD a la même propriété : les droites perpendiculaires allant de B, C et D à CP, DP et AP, respectivement, se coupent également au point X. 4. Répétez le processus pour les sommets restants du carré. Effectuez successivement des rotations de 90 degrés dans le sens des aiguilles d’une montre autour des points B, C et D. Chaque rotation mappe le carré sur lui-même et préserve la propriété des lignes perpendiculaires concurrentes. Par conséquent, les lignes perpendiculaires allant de A, B, C et D à BP, CP, DP et AP, respectivement, se coupent toutes au point X, qui est le point d'intersection de toutes les lignes perpendiculaires pivotées. Ainsi, nous avons montré que les lignes perpendiculaires tracées depuis les sommets A, B, C et D du carré jusqu’aux côtés opposés BP, CP, DP et AP, respectivement, sont concourantes en un point à l’intérieur du carré.

Frequently asked questions (FAQs)
What is the product of 37 multiplied by 51?
+
Math question: Solve the inequality 2x - 3 < 5x + 7 and express the solution set using interval notation. (
+
Math question: Given the parabola function 𝑦 = 4𝑥^2, what are the characteristics of its graph in terms of vertex, axis of symmetry, and concavity?
+
New questions in Mathematics
A car tire can rotate at a frequency of 3000 revolutions per minute. Given that a typical tire radius is 0.5 m, what is the centripetal acceleration of the tire?
Solve: −3(−2x+23)+12=6(−4x+9)+9.
Imagine that you are in an electronics store and you want to calculate the final price of a product after applying a discount. The product you are interested in has an original price of $1000 MN, but, for today, the store offers a 25% discount on all its products. Develop an algorithm that allows you to calculate the final price you will pay, but first point out the elements.
I need .23 turned into a fraction
The data set (75, 85, 58, 72, 70, 75) is a random sample from the normal distribution No(µ, σ). Determine a 95% two-sided confidence interval for the mean µ .
4x/2+5x-3/6=7/8-1/4-x
A merchant can sell 20 electric shavers a day at a price of 25 each, but he can sell 30 if he sets a price of 20 for each electric shaver. Determine the demand equation, assuming it is linear. Consider (P= price, X= quantity demanded)
Calculate the value of a so that the vectors (2,2,−1),(3,4,2) and(a,2,3) are coplanar.
If A and B are any events, the property that is not always true is: a) 0 ≤ 𝑃(𝐴 ∩ 𝐵) ≤ 1 b) 𝑃(Ω) = 1 c) 𝑃(𝐵) = 1 − 𝑃(𝐵𝑐) d) 𝑃(∅) = 0 e) 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)
In a company dedicated to packaging beer in 750 mL containers, a normal distribution is handled in its packaging process, which registers an average of 745 mL and a standard deviation of 8 mL. Determine: a) The probability that a randomly selected container exceeds 765 mL of beer b) The probability that the beer content of a randomly selected container is between 735 and 755 mL.
Professor Vélez has withdrawn 40 monthly payments of $3,275 from her investment account. If the investment account yields 4% convertible monthly, how much did you have in your investment account one month before making the first withdrawal? (Since you started making withdrawals you have not made any deposits.)
(X+2)(x+3)=4x+18
17. A loan for $104259 is taken out for 10 years with an annual interest rate of 9.4%, compounded quarterly. What quarterly payment is required to pay the loan off in 10 years? Enter to the nearest cent (two decimals). Do not use $ signs or commas in the answer.
Nancy is a waitress at Seventh Heaven Hamburgers. She wants to estimate the average amount each table leaves for a tip. A random sample of 5 groups was taken and the amount they left for a tip (in dollars) is listed below: $11.00 $8.00 $6.00 $3.00 $7.00 a.) Find a 90% confidence interval for the average amount left by all groups. (*round to the nearest cent*) $ < μ < $ b.) If the sample size were larger, with everything else remaining the same, would the margin of Error increase or decrease? Decrease Increase c.) If the Confidence level were 95% instead of 90%, would the range (size) of the Confidence Interval be larger or smaller? Larger Smaller
Given the word WEIRD, determine a four-letter offspring that can be formed with the letters of the word written above
a) Statistics scores are normally distributed with the mean of 75 and standard deviation of 7. What is the probability that a student scores between 80 and 88
How many cards do you expect to pull from a poker deck until you get an ACE?
What js the greatest 4-digit even number that can be formed by 3,6,1,4?
The slope of the tangent line to the curve f(x)=4tan x at the point (π/4,4)
x(squared) -8x=0