Question

P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

297

likes
1484 views

Answer to a math question P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

Expert avatar
Gene
4.5
108 Answers
Pour montrer que les lignes perpendiculaires tracĂ©es depuis les sommets d’un carrĂ© vers les cĂŽtĂ©s opposĂ©s sont concourantes en un point Ă  l’intĂ©rieur du carrĂ©, nous pouvons utiliser la rotation gĂ©omĂ©trique. ConsidĂ©rons un carrĂ© ABCD contenant un point P. Nous montrerons que les droites perpendiculaires tracĂ©es respectivement de A, B, C et D vers BP, CP, DP et AP se coupent en un seul point. 1. Dessinez le segment de droite AP et construisez une ligne perpendiculaire de A Ă  BP. Appelons X l'intersection de cette ligne perpendiculaire et de BP. 2. Effectuons maintenant une rotation du carrĂ© de 90 degrĂ©s dans le sens des aiguilles d'une montre autour du point A. Cette rotation mappe le point B au point C, le point C au point D et le point D au point P. Le segment de droite BP est mappĂ© au segment de droite. CP. 3. AprĂšs la rotation, la droite perpendiculaire de C Ă  CP coĂŻncide avec la droite perpendiculaire d’origine de B Ă  BP. Par consĂ©quent, le carrĂ© pivotĂ© ABCD a la mĂȘme propriĂ©té : les droites perpendiculaires allant de B, C et D Ă  CP, DP et AP, respectivement, se coupent Ă©galement au point X. 4. RĂ©pĂ©tez le processus pour les sommets restants du carrĂ©. Effectuez successivement des rotations de 90 degrĂ©s dans le sens des aiguilles d’une montre autour des points B, C et D. Chaque rotation mappe le carrĂ© sur lui-mĂȘme et prĂ©serve la propriĂ©tĂ© des lignes perpendiculaires concurrentes. Par consĂ©quent, les lignes perpendiculaires allant de A, B, C et D Ă  BP, CP, DP et AP, respectivement, se coupent toutes au point X, qui est le point d'intersection de toutes les lignes perpendiculaires pivotĂ©es. Ainsi, nous avons montrĂ© que les lignes perpendiculaires tracĂ©es depuis les sommets A, B, C et D du carrĂ© jusqu’aux cĂŽtĂ©s opposĂ©s BP, CP, DP et AP, respectivement, sont concourantes en un point Ă  l’intĂ©rieur du carrĂ©.

Frequently asked questions (FAQs)
Question: An object travels a distance of 120 km in 4 hours. What is its average speed? (
+
Find the cube root of (-64)^3 multiplied by (-2)^5.
+
What is the sine of π/3 radians?
+
New questions in Mathematics
The sum of an infinite geometric series is 13,5 The sum of the same series, calculated from the third term is 1,5. Q. Calculate r if r>0.
Consider the relation R defined on the set of positive integers as (x,y) ∈ R if x divides y. Choose all the true statements. R is reflexive. R is symmetric. R is antisymmetric. R is transitive. R is a partial order. R is a total order. R is an equivalence relation.
Use the elimination to find the solution to each linear system. X+y=43 2x-y=20
A company is wondering whether to invest £18,000 in a project which would make extra profits of £10,009 in the first year, £8,000 in the second year and £6,000 in the third year. It’s cost of capital is 10% (in other words, it would require a return of at least 10% on its investment). You are required to evaluate the project.
(6.2x10^3)(3x10^-6)
Determine the absolute extrema of the function 𝑓(đ‘„)=đ‘„3−18đ‘„2 96đ‘„ , on the interval [1,10]
Find the root of x^4-10x^ 5=0 using Newton's method, with a precision of the smallest positive root.
You are planning to buy a car worth $20,000. Which of the two deals described below would you choose, both with a 48-month term? (NB: estimate the monthly payment of each offer). i) the dealer offers to take 10% off the price, then lend you the balance at an annual percentage rate (APR) of 9%, monthly compounding. ii) the dealer offers to lend you $20,000 (i.e., no discount) at an APR of 3%, monthly compounding.
2x2 and how much?
A person borrows rm 1000 from a bank at an interest rate of 10%. After some time, he pays the bank rm 1900 as full and final settlement of the loan. Estimate the duration of his loan.
4x/2+5x-3/6=7/8-1/4-x
The cost of unleaded gasoline in the Bay Area once followed an unknown distribution with a mean of $4.59 and a standard deviation of $0.10. Sixteen gas stations from the Bay Area are randomly chosen. We are interested in the average cost of gasoline for the 16 gas stations. 84. Find the probability that the average price for 30 gas stations is less than $4.55. a 0.6554 b 0.3446 c 0.0142 d 0.9858 e 0
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
Fill in the P(X-x) values to give a legitimate probability distribution for the discrete random variable X, whose possible values are -5 ,3 , 4, 5 , and 6.
In poker, a full house consists of five cards, where two of the cards have the same number (or letter) and the remaining three also have the same number (or letter) as each other (but not as the previous two cards). Use a search engine or Wikipedia to understand the concept better if necessary. In how many different ways can one obtain a full house?
The area bounded by the curve y=ln(x) and the lines x=1 and x=4 above the x−axis is
Below are three 95% CIs (where 𝜎 was known and đ‘„Ì…happened to be the same); one with sample size 30, one with samplesize 40, and one with sample size 50. Which is which?(66.2, 76.2)(61.2, 81.2)(56.2, 86.2)
a) 6x − 5 > x + 20
7-1=6 6x2=12 Explain that
If the area of a circle is 75.7ft2, what is the radius? Give the answer in metres. Round answer to 2 decimal places and enter the units.