Question

P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

297

likes
1484 views

Answer to a math question P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

Expert avatar
Gene
4.5
107 Answers
Pour montrer que les lignes perpendiculaires tracées depuis les sommets d’un carré vers les côtés opposés sont concourantes en un point à l’intérieur du carré, nous pouvons utiliser la rotation géométrique. Considérons un carré ABCD contenant un point P. Nous montrerons que les droites perpendiculaires tracées respectivement de A, B, C et D vers BP, CP, DP et AP se coupent en un seul point. 1. Dessinez le segment de droite AP et construisez une ligne perpendiculaire de A à BP. Appelons X l'intersection de cette ligne perpendiculaire et de BP. 2. Effectuons maintenant une rotation du carré de 90 degrés dans le sens des aiguilles d'une montre autour du point A. Cette rotation mappe le point B au point C, le point C au point D et le point D au point P. Le segment de droite BP est mappé au segment de droite. CP. 3. Après la rotation, la droite perpendiculaire de C à CP coïncide avec la droite perpendiculaire d’origine de B à BP. Par conséquent, le carré pivoté ABCD a la même propriété : les droites perpendiculaires allant de B, C et D à CP, DP et AP, respectivement, se coupent également au point X. 4. Répétez le processus pour les sommets restants du carré. Effectuez successivement des rotations de 90 degrés dans le sens des aiguilles d’une montre autour des points B, C et D. Chaque rotation mappe le carré sur lui-même et préserve la propriété des lignes perpendiculaires concurrentes. Par conséquent, les lignes perpendiculaires allant de A, B, C et D à BP, CP, DP et AP, respectivement, se coupent toutes au point X, qui est le point d'intersection de toutes les lignes perpendiculaires pivotées. Ainsi, nous avons montré que les lignes perpendiculaires tracées depuis les sommets A, B, C et D du carré jusqu’aux côtés opposés BP, CP, DP et AP, respectivement, sont concourantes en un point à l’intérieur du carré.

Frequently asked questions (FAQs)
Question: Solve the equation: 3x + 7 = 19. What is the value of 'x'?
+
Math question: What is the equation of an ellipse with a major axis of length 10 and a minor axis of length 6?
+
What is the criteria for triangle congruence using the signs of equality?
+
New questions in Mathematics
Use the digits of 1,9,2,3 to come up with all the numbers 98 and 95
³√12 x ⁶√96
2x-y=5 x-y=4
Suppose that a device has been created that launches objects at ground level and that its operation is modeled by the function h(x) = -4ײ + 256x, with h being the height (in meters) and x being the distance (in meters) What is the maximum height that the object reaches?
Suppose 50% of the doctors and hospital are surgeons if a sample of 576 doctors is selected what is the probability that the sample proportion of surgeons will be greater than 55% round your answer to four decimal places
Answer the following questions regarding the expression below. 0.1 (a) Write the number as a fraction.
In a grocery store, when you take out 3 peppers and 4 carrots, there are 26 peppers and 46 carrots left. How many peppers and carrots were there initially?
A recurring sequence is one where elements repeat after completing one standard. If the sequence AB8C14D96AB8C1... is recurring its twentieth term is equal to: (A) B. (B) 8. (C) A. (D) 6. (E) D.
Engineers want to design seats in commercial aircraft so that they are wide enough to fit ​95% of all males.​ (Accommodating 100% of males would require very wide seats that would be much too​ expensive.) Men have hip breadths that are normally distributed with a mean of 14.4 in. and a standard deviation of 1.2 in. Find P95. That​ is, find the hip breadth for men that separates the smallest ​95% from the largest 5​%.
The simple average of 15 , 30 , 40 , and 45 is
4+168×10³×d1+36×10³×d2=-12 -10+36×10³×d1+72×10³×d2=0
X~N(2.6,1.44). find the P(X<3.1)
Jasminder has made 55% of the recipes in a particular cookbook. If there are 9 recipes that he has never made, how many recipes does the cookbook contain?
For what values of m is point P (m, 1 - 2m) in the 2⁰ quadrant?
find missing measure for triangle area = 48 m square base = 10m heaighy = ? m
How to factorise 5y^2 -7y -52
2 - 6x = -16x + 28
calculate the product of 4 and 1/8
9n + 7(-8 + 4k) use k=2 and n=3
(3.1x10^3g^2)/(4.56x10^2g)