Question

P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

297

likes
1484 views

Answer to a math question P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

Expert avatar
Gene
4.5
108 Answers
Pour montrer que les lignes perpendiculaires tracées depuis les sommets d’un carré vers les côtés opposés sont concourantes en un point à l’intérieur du carré, nous pouvons utiliser la rotation géométrique. Considérons un carré ABCD contenant un point P. Nous montrerons que les droites perpendiculaires tracées respectivement de A, B, C et D vers BP, CP, DP et AP se coupent en un seul point. 1. Dessinez le segment de droite AP et construisez une ligne perpendiculaire de A à BP. Appelons X l'intersection de cette ligne perpendiculaire et de BP. 2. Effectuons maintenant une rotation du carré de 90 degrés dans le sens des aiguilles d'une montre autour du point A. Cette rotation mappe le point B au point C, le point C au point D et le point D au point P. Le segment de droite BP est mappé au segment de droite. CP. 3. Après la rotation, la droite perpendiculaire de C à CP coïncide avec la droite perpendiculaire d’origine de B à BP. Par conséquent, le carré pivoté ABCD a la même propriété : les droites perpendiculaires allant de B, C et D à CP, DP et AP, respectivement, se coupent également au point X. 4. Répétez le processus pour les sommets restants du carré. Effectuez successivement des rotations de 90 degrés dans le sens des aiguilles d’une montre autour des points B, C et D. Chaque rotation mappe le carré sur lui-même et préserve la propriété des lignes perpendiculaires concurrentes. Par conséquent, les lignes perpendiculaires allant de A, B, C et D à BP, CP, DP et AP, respectivement, se coupent toutes au point X, qui est le point d'intersection de toutes les lignes perpendiculaires pivotées. Ainsi, nous avons montré que les lignes perpendiculaires tracées depuis les sommets A, B, C et D du carré jusqu’aux côtés opposés BP, CP, DP et AP, respectivement, sont concourantes en un point à l’intérieur du carré.

Frequently asked questions (FAQs)
Question: What percent is represented by the fraction 2/5?
+
Math question: For a constant function f(x) = c, where c is a real number, what is the value of f(x) when x = 7?
+
What is the limit of (3x^2 + 5x - 2) / (2x^2 - 3x + 1) as x approaches 2?
+
New questions in Mathematics
Add. 7/w²+18w+81 + 1/w²-81
a ferry travels 1/6 of the distance between two ports in 3/7 hour. The ferry travels at a constant rate. At this rate, what fraction of the distance between the two ports can the ferry travel in one hour.
Revenue Maximization: A company sells products at a price of $50 per unit. The demand function is p = 100 - q, where p is the price and q is the quantity sold. How many units should they sell to maximize revenue?
Write 32/25 as a percent
A car that starts from rest moves for 11 min, reaching a speed of 135 km/h, calculate the acceleration it had
Use the elimination to find the solution to each linear system. X+y=43 2x-y=20
what is the annual rate on ​$525 at 0.046​% per day for 3 months?
"If three wolves catch three rabbits in three hours, how many wolves would it take to catch a hundred rabbits in a hundred hours?" The answer is the number of response units.
(2b) to the 1/4th power. Write the expression in radical form.
v Is the following statement a biconditional? If Shannon is watching a Tigers game, then it is on television.
Solve : 15/16 divide 12/8 =x/y
show step by step simplification: (¬𝑑∨((¬b∧c)∨(b∧¬c)))∧((𝑎 ∧ 𝑏) ∨ (¬𝑎 ∧ ¬𝑏))∧(¬𝑐∨((¬𝑑∧𝑎)∨(𝑑∧¬𝑎)))
How many square feet of floor area are there in three two-storey apartment houses, each of which is 38 feet wide and 76 feet long?
Given (3x+2)E [2;14] how much money (in soles) does Sophia have if numerically it is the greatest value of x?
A machine produces 255 bolts in 24 minutes. At the same rate, how many bolts would be produced in 40 minutes?
9 x² + 2x + 1 = 0
The mass of 120 molecules of X2C4 is 9127.2 amu. Identify the unknown atom, X, by finding the atomic mass. The atomic mass of C is 12.01 amu/atom
The area bounded by the curve y=ln(x) and the lines x=1 and x=4 above the x−axis is
The following incoming payments show up at a tax inspection: 25 000€ on 19.01.2008, 140 000€ on 27.03.2008 and 19 000€ on a date that which is illegible, and 60 000€ on 15.06.2008. On which date did the payment of the 19 000€ appear, if on 30.06.2008 the money on the account (incl. interest at 4%) is 246 088.89€? Use simple interest and 30E/360 DCC. Solution: 45 days, 15.05.08
The slope of the tangent line to the curve f(x)=4tan x at the point (π/4,4)