Question

P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

297

likes
1484 views

Answer to a math question P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

Expert avatar
Gene
4.5
107 Answers
Pour montrer que les lignes perpendiculaires tracées depuis les sommets d’un carré vers les côtés opposés sont concourantes en un point à l’intérieur du carré, nous pouvons utiliser la rotation géométrique. Considérons un carré ABCD contenant un point P. Nous montrerons que les droites perpendiculaires tracées respectivement de A, B, C et D vers BP, CP, DP et AP se coupent en un seul point. 1. Dessinez le segment de droite AP et construisez une ligne perpendiculaire de A à BP. Appelons X l'intersection de cette ligne perpendiculaire et de BP. 2. Effectuons maintenant une rotation du carré de 90 degrés dans le sens des aiguilles d'une montre autour du point A. Cette rotation mappe le point B au point C, le point C au point D et le point D au point P. Le segment de droite BP est mappé au segment de droite. CP. 3. Après la rotation, la droite perpendiculaire de C à CP coïncide avec la droite perpendiculaire d’origine de B à BP. Par conséquent, le carré pivoté ABCD a la même propriété : les droites perpendiculaires allant de B, C et D à CP, DP et AP, respectivement, se coupent également au point X. 4. Répétez le processus pour les sommets restants du carré. Effectuez successivement des rotations de 90 degrés dans le sens des aiguilles d’une montre autour des points B, C et D. Chaque rotation mappe le carré sur lui-même et préserve la propriété des lignes perpendiculaires concurrentes. Par conséquent, les lignes perpendiculaires allant de A, B, C et D à BP, CP, DP et AP, respectivement, se coupent toutes au point X, qui est le point d'intersection de toutes les lignes perpendiculaires pivotées. Ainsi, nous avons montré que les lignes perpendiculaires tracées depuis les sommets A, B, C et D du carré jusqu’aux côtés opposés BP, CP, DP et AP, respectivement, sont concourantes en un point à l’intérieur du carré.

Frequently asked questions (FAQs)
What is the dot product of vector A = (3, 4) and vector B = (2, -5)?
+
What is the limit as x approaches 3 of (4x² - 7x + 2) / (x - 3)?
+
What is the lateral surface area of a right circular cylinder with a radius of 4 units and a height of 10 units?
+
New questions in Mathematics
solve the following trigo equation for 0°<= x <= 360°. sec x =-2
4.2x10^_6 convert to standard notation
Solve the math problem 400 students are asked if they live in an apartment and have a pet: Apartment: 120 Both: 30 Pet: 90 The probability that a randomly selected student not living in an apartment has a pet is
2.5 / 21.85
The bus one way of the road which is 10km is heading with speed of 20km/h ,then the bus the other 10km is heading with speed of 60km/h. The middle speed of the road is it equal with arithmetic speed of the v1 and v2 ?
Divide 22 by 5 solve it by array and an area model
7/6-(-1/9)
calculate the normal vector of line y = -0.75x + 3
Log5 625
7=-4/3y -1
Use the sample data and confidence level given below to complete parts​ (a) through​ (d). A drug is used to help prevent blood clots in certain patients. In clinical​ trials, among 4336 patients treated with the​ drug, 194 developed the adverse reaction of nausea. Construct a ​99% confidence interval for the proportion of adverse reactions.
From 1975 through 2020 the mean annual gain of the Dow Jones Industrial Average was 652. A random sample of 34 years is selected from this population. What is the probability that the mean gain for the sample was between 400 and 800? Assume the standard deviation is 1539
A cell phone company offers two calling plans. Plan A: $20 per month plus 5 cents for each minute, or Plan B: $30 per month plus 3 cents for each minute. [2] Write an equation to describe the monthly cost (a) C (in $) in terms of the time m (in minutes) of phone calls when Plan A is applied.
16.What payment (deposit) made at the end of each month will accumulate to $10473 in 13 years at 7.9% compounded monthly? Enter to the nearest cent (two decimals). Do not use $ signs or commas in the answer.
15.A newly married couple purchased a home with a $123710 down payment. They financed the remaining balance of the home with a mortgage. Their payments were $15395 at the end of every six months for 23 years and the interest rate was 10.6%, compounded semi-annually. How much did they purchase their home for. Enter to the nearest cent (two decimals). Do not use $ signs or commas in the answer.
A person runs 175 yards per minute write a variable that represents the relationship between time and distance
Total Users with an active Wise account = Total Active Users + Total Users who haven’t transacted Total Active Users = Total MCA Users + Total Send Users = Total New Users + Retained Users Total New Users = New Send Users + New MCA Users Total MCA Users = New MCA Users + Retained Users who transacted this month via MCA Total Send Users = New Send Users + Retained Users who transacted this month via Send Send CR = Total Send Users / Total Users with an active Wise account MCA CR = Total MCA Users / Total Users with an active Wise account New Send CR = New Send Users / New Profiles Created in Month New MCA CR = New MCA Users / New Profiles Created in Month We have recently witnessed a drop in MCA conversion, but send user conversion is stable, can you help explain why?
solve R the following equation 4 x squared - 35 - 9 over x squared is equal to 0
Sin(5pi/3)
15=5(x+3)