Question

P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

297

likes
1484 views

Answer to a math question P 13. Let P a point inside of a square ABCD. Show that the perpendicular lines drawn from A, B, C, respectively D, to BP, CP, DP, respectively AP are concurrent. Use geometric rotation.

Expert avatar
Gene
4.5
108 Answers
Pour montrer que les lignes perpendiculaires tracĂ©es depuis les sommets d’un carrĂ© vers les cĂŽtĂ©s opposĂ©s sont concourantes en un point Ă  l’intĂ©rieur du carrĂ©, nous pouvons utiliser la rotation gĂ©omĂ©trique. ConsidĂ©rons un carrĂ© ABCD contenant un point P. Nous montrerons que les droites perpendiculaires tracĂ©es respectivement de A, B, C et D vers BP, CP, DP et AP se coupent en un seul point. 1. Dessinez le segment de droite AP et construisez une ligne perpendiculaire de A Ă  BP. Appelons X l'intersection de cette ligne perpendiculaire et de BP. 2. Effectuons maintenant une rotation du carrĂ© de 90 degrĂ©s dans le sens des aiguilles d'une montre autour du point A. Cette rotation mappe le point B au point C, le point C au point D et le point D au point P. Le segment de droite BP est mappĂ© au segment de droite. CP. 3. AprĂšs la rotation, la droite perpendiculaire de C Ă  CP coĂŻncide avec la droite perpendiculaire d’origine de B Ă  BP. Par consĂ©quent, le carrĂ© pivotĂ© ABCD a la mĂȘme propriĂ©té : les droites perpendiculaires allant de B, C et D Ă  CP, DP et AP, respectivement, se coupent Ă©galement au point X. 4. RĂ©pĂ©tez le processus pour les sommets restants du carrĂ©. Effectuez successivement des rotations de 90 degrĂ©s dans le sens des aiguilles d’une montre autour des points B, C et D. Chaque rotation mappe le carrĂ© sur lui-mĂȘme et prĂ©serve la propriĂ©tĂ© des lignes perpendiculaires concurrentes. Par consĂ©quent, les lignes perpendiculaires allant de A, B, C et D Ă  BP, CP, DP et AP, respectivement, se coupent toutes au point X, qui est le point d'intersection de toutes les lignes perpendiculaires pivotĂ©es. Ainsi, nous avons montrĂ© que les lignes perpendiculaires tracĂ©es depuis les sommets A, B, C et D du carrĂ© jusqu’aux cĂŽtĂ©s opposĂ©s BP, CP, DP et AP, respectivement, sont concourantes en un point Ă  l’intĂ©rieur du carrĂ©.

Frequently asked questions (FAQs)
What is the derivative of sin(x) + cos(x) + tan(x) at x = π/4?
+
What is the length of a circumferance with a radius of 5 units?
+
What is the variance of the data set: 3, 5, 7, 9?
+
New questions in Mathematics
a runner wants to build endurance by running 9 mph for 20 min. How far will the runner travel in that time period?
Add. 7/wÂČ+18w+81 + 1/wÂČ-81
The patient is prescribed a course of 30 tablets. The tablets are prescribed “1 tablet twice a day”. How many days does a course of medication last?
5 . {2/5 + [ (8/-9) - (1/-7) + (-2/5) ] Ă· (2/-5)} . 8/15
-6(3x-4)=-6
Find the equation of the normal to the curve y=xÂČ+4x-3 at point(1,2)
P is a polynomial defined by P(x) = 4x^3 - 11×^2 - 6x + 9. Two factors are (x - 3) and (x + 1). Rewrite the expression for P as the product of linear factors.
3x+2/2x-1 + 3+x/2x-1 - 3x-2/2x-1
Log(45)
3. A rock is dropped from a height of 16 ft. It is determined that its height (in feet) above ground t seconds later (for 0≀t≀3) is given by s(t)=-2t2 + 16. Find the average velocity of the rock over [0.2,0.21] time interval.
Using the bank and exact method, calculate the interest on capital 10000 at 12% annual nominal interest rate for the period from 15.3. 2016 until 10/10/2016
Jasminder has made 55% of the recipes in a particular cookbook. If there are 9 recipes that he has never made, how many recipes does the cookbook contain?
Write the detailed definition of a supply chain/logistics related maximization problem with 8 variables and 6 constraints. Each constraint should have at least 6 variables. Each constraint should have At least 5 variables will have a value greater than zero in the resulting solution. Variables may have decimal values. Type of equations is less than equal. Numbers and types of variables and constraints are important and strict. Model the problem and verify that is feasible, bounded and have at least 5 variables are nonzero.
A buyer purchased a North Carolina home for $475,250. The seller allowed the buyer to assume his first small mortgage with a loan balance of $110,000. How much is the excise tax paid in the transaction? $951 $729.50 $950.50 $221 none of the above
You buy a $475,000 house and put 15% down. If you take a 20 year amortization and the rate is 2.34%, what would the monthly payment be?
a) 6x − 5 > x + 20
Write the inequality in the form of a<x<b. |x| < c^2
2+2020202
Select a variable and collect at least 50 data values. For example, you may ask the students in the college how many hours they study per week or how old they are, etc. a. Explain what your target population was. b. State how the sample was selected. c. Summarise the data by using a frequency table. d. Calculate all the descriptive measures for the data and describe the data set using the measures. e. Present the data in an appropriate way. f. Write a paragraph summarizing the data.
In a school playground When going out for recess, 80 men and 75 women coexist, the Patio measures 10 meters For 40 meters (what will be the population density in the break