Question

A. Consider a race of n cars that leave the same place and with constant speeds, but different from each other. If at a given moment the distance between each car and the one in front of it everyone has the same distance, at what other point in the race will this happen? Justify your answer. B. What is the value of the ratio between the speed of the fastest in relation to that of the slowest?

89

likes
443 views

Answer to a math question A. Consider a race of n cars that leave the same place and with constant speeds, but different from each other. If at a given moment the distance between each car and the one in front of it everyone has the same distance, at what other point in the race will this happen? Justify your answer. B. What is the value of the ratio between the speed of the fastest in relation to that of the slowest?

Expert avatar
Hank
4.8
105 Answers
**A.** Vamos considerar que no momento inicial, a distância entre cada carro e o da frente dele é a mesma. Isso significa que a diferença de distância percorrida por cada carro também é a mesma.

Se a velocidade do carro mais rápido é v_1, a do segundo carro é v_2, e assim por diante até a velocidade do carro mais lento v_n, a distância percorrida por cada um deles será igual em um certo momento.

Se após um tempo t a distância entre eles for a mesma novamente, isso significa que a diferença de distância percorrida por cada carro continua a mesma. Portanto, no novo momento em que isso acontecer, cada carro terá percorrido uma distância maior, mas a relação de distância entre eles será a mesma.

**Resposta:** Em outro momento da corrida em que a distância entre cada carro e o da frente dele seja a mesma, será quando esta relação de distância percorrida por cada um se mantiver constante.

**B.** A relação entre a velocidade do carro mais rápido e a do mais lento pode ser encontrada pela razão entre suas velocidades.

Se a velocidade do carro mais rápido é v_1 e a do mais lento é v_n, então a relação será:

\frac{v_1}{v_n}

**Resposta:** A relação entre a velocidade do carro mais rápido em relação à do mais lento é \frac{v_1}{v_n}.

Frequently asked questions (FAQs)
Question: Solve for x: 2x + 5 = 15 - 3x
+
Question: Find the measure of ∠ABC, if the angle bisector of ∠ABC intersects side AC at point D. Given ∠ABD = 30° and ∠CBD = 70°.
+
Math question: Find the derivative of f(x) = 3x^2 + 4x - 7 using the basic rules of derivatives.
+
New questions in Mathematics
8x²-30x-10x²+70x=-30x+10x²-20x²
-6n+5=-13
The sum of an infinite geometric series is 13,5 The sum of the same series, calculated from the third term is 1,5. Q. Calculate r if r>0.
Since one of the three integers whose product is (-60) is (+4), write the values that two integers can take.
A, B, C and D are numbers; If ABCD = 23, What is the result of ABCD BCDA CDAB DABC operation?
Determine the momentum of a 20 kg body traveling at 20 m/s.
The sum of two numbers is equal to 58 and the largest exceeds by at least 12. Find the two numbers
If you randomly selected one person from the 900 subjects in this study, what is the probability that the person exhibits the minimum BMI?
How much does the average college student spend on food per month? A random sample of 50 college students showed a sample mean $670 with a standard deviation $80. Obtain the 95% confidence interval for the amount college students spend on food per month.
3+7
-1%2F2x-4%3D18
Next%C3%B3n%2C+we+are+given+a+series+of+Tri%C3%A1angles+Right%C3%A1angles+%3Cbr%2F%3Ey+in+each+one+of+them+ are+known+2%28two%29+measurements+of+sides.+%3Cbr%2F%3Elet's+determine+all+trigonom%C3%A9tric+ratios.
5x+13+7x-10=99
Let X be a discrete random variable such that E(X)=3 and V(X)=5. Let 𝑌 = 2𝑋^2 − 3𝑋. Determine E(Y).
Kaya deposits 25,000 into an account that earns 3% interest compounded monthly. How much does Kaya have in the account after 6 years 8 months? Round to the nearest cent. 32,912.50 30,000 29,923.71 30,527.45
Cuboid containers (open at the top) should be examined with regard to their volume. The figure below shows a network of such containers (x ∈ Df). Determine a function ƒ (assignment rule and definition area D) that describes the volume of these containers and calculate the volume of such a container if the content of the base area is 16 dm². Show that this function f has neither a local maximum nor a global maximum
there are 500,000 bacteria at the end of a pin point. 1000 bacteria can make a person sick. then bacteria at the tip of a pin point can make 500 people sick. Also, many people do not know that bacteria can (reproduce). Let's say there are 5 bacteria and we leave it for 15 minutes. bacteria will multiply to 10. if left for up to 30 minutes, 20 bacteria will form. if left up to 45 minutes. bacteria will multiply up to 40. every 15 minutes the bacteria will double 2. if you start with five bacteria that reproduce every 15 minutes, how manu bacteria would you have after 12 hours ?
In a school playground When going out for recess, 80 men and 75 women coexist, the Patio measures 10 meters For 40 meters (what will be the population density in the break
Write decimal as the fraction 81/125 simplified
Find the orthogonal projection of a point A = (1, 2, -1) onto a line passing through the points Pi = (0, 1, 1) and P2 = (1, 2, 3).