$
1. Write the depreciation formula:
V = C \times (1 - r)^n
2. Substitute the given values:
1,500 = 3,000 \times (1 - 0.035)^n
\frac{1,500}{3,000} = (0.965)^n
0.5 = (0.965)^n
3. Take the natural logarithm on both sides:
\ln(0.5) = n \times \ln(0.965)
4. Solve for \( n \):
n = \frac{\ln(0.5)}{\ln(0.965)}
5. Using a calculator for the logarithms:
n = \frac{\ln(0.5)}{\ln(0.965)} \approx \frac{-0.6931}{-0.0354} \approx 19.46
The useful life of the machine is approximately 19.46 years.