Para encontrarmos o polinômio mônico de menor grau com coeficientes em \mathbb{Q} sabendo que \sqrt{2} é raiz de p(x) e 2+i é raiz múltipla de p(x) , podemos utilizar essas informações para construir as raízes de p(x) .
1. Como \sqrt{2} é raiz de p(x) , então x-\sqrt{2} é um fator de p(x) .
2. Como 2+i é raiz de p(x) , então x-(2+i) é um fator de p(x) . Como é raiz múltipla, temos outro fator x-(2-i) .
Portanto, temos até agora: (x-\sqrt{2})(x-(2+i))(x-(2-i)) .
Depois, multiplicamos os fatores para obter o polinômio:
p(x)=(x-\sqrt{2})(x-(2+i))(x-(2-i))
p(x)=(x-\sqrt{2})(x-2-i)(x-2+i)
p(x)=(x-\sqrt{2})(x^2-4x+4i)
p(x)=x^3-4x^2+4ix-\sqrt{2}x^2+4\sqrt{2}x-4\sqrt{2}i
p(x)=x^3-(4+\sqrt{2})x^2+(4\sqrt{2}+4i)x-4\sqrt{2}i
Portanto, o polinômio mônico p(x) de menor grau com coeficientes em \mathbb{Q} tal que \sqrt{2} é raiz de p(x) e 2+i é raiz múltipla de p(x) é:
\boxed{p(x) = x^3-(4+\sqrt{2})x^2+(4\sqrt{2}+4i)x-4\sqrt{2}i}