1. Write down the Poisson probability formula:
    P(k) = \frac{\lambda^k e^{-\lambda}}{k!} 
2. Use the condition \(2 P(2) = P(3)\):
    2 \frac{\lambda^2 e^{-\lambda}}{2!} = \frac{\lambda^3 e^{-\lambda}}{3!} 
3. Simplify the equation:
    \lambda^2 = \frac{\lambda^3}{6} 
4. Solve for \(\lambda\):
   - Divide both sides by \(\lambda^2\):
      1 = \frac{\lambda}{6} 
   - Multiply both sides by 6:
      \lambda = 6 
5. For a Poisson distribution, variance Var(X) is \(\lambda\).
Answer is 6.