To determine the value of σp̂, we will use the formula:
\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}
Given x = 424 and n = 568, we can calculate p:
p = \frac{x}{n} = \frac{424}{568} \approx 0.746
Now we can plug in the values of p and n into the formula to calculate σp̂:
\sigma_{\hat{p}} = \sqrt{\frac{0.746(1-0.746)}{568}} \approx \sqrt{\frac{0.746 \times 0.254}{568}} \approx \sqrt{\frac{0.189484}{568}} \approx \sqrt{0.000333} \approx 0.018
Therefore, the value of σp̂ is approximately 0.018.
\boxed{0.018}