Question

In a physics degree course, there is an average dropout of 17 students in the first semester. What is the probability that the number of dropouts in the first semester in a randomly selected year has between 13 and 16 students?

83

likes
414 views

Answer to a math question In a physics degree course, there is an average dropout of 17 students in the first semester. What is the probability that the number of dropouts in the first semester in a randomly selected year has between 13 and 16 students?

Expert avatar
Esmeralda
4.7
95 Answers
$\frac{ {17}^{13} }{ 13 ! \times {e}^{17} }+\frac{ {e}^{-17} \times {17}^{14} }{ 14 ! }+\frac{ {e}^{-17} \times {17}^{15} }{ 15 ! }+\frac{ {e}^{-17} \times {17}^{16} }{ 16 ! }$
$\frac{ {17}^{13} }{ 13 ! \times {e}^{17} }+\frac{ {17}^{14} }{ 14 ! \times {e}^{17} }+\frac{ {e}^{-17} \times {17}^{15} }{ 15 ! }+\frac{ {e}^{-17} \times {17}^{16} }{ 16 ! }$
$\frac{ {17}^{13} }{ 13 ! \times {e}^{17} }+\frac{ {17}^{14} }{ 14 ! \times {e}^{17} }+\frac{ {17}^{15} }{ 15 ! \times {e}^{17} }+\frac{ {e}^{-17} \times {17}^{16} }{ 16 ! }$
$\frac{ {17}^{13} }{ 13 ! \times {e}^{17} }+\frac{ {17}^{14} }{ 14 ! \times {e}^{17} }+\frac{ {17}^{15} }{ 15 ! \times {e}^{17} }+\frac{ {17}^{16} }{ 16 ! \times {e}^{17} }$
$\frac{ {17}^{13} }{ 13 ! \times {e}^{17} }+\frac{ {17}^{14} }{ 14 \times 13 ! \times {e}^{17} }+\frac{ {17}^{15} }{ 15 ! \times {e}^{17} }+\frac{ {17}^{16} }{ 16 ! \times {e}^{17} }$
$\frac{ {17}^{13} }{ 13 ! \times {e}^{17} }+\frac{ {17}^{14} }{ 14 \times 13 ! \times {e}^{17} }+\frac{ {17}^{15} }{ 15 \times 14 \times 13 ! \times {e}^{17} }+\frac{ {17}^{16} }{ 16 ! \times {e}^{17} }$
$\frac{ 14 \times 15 \times 16 ! \times {17}^{13}+15 \times 16 ! \times {17}^{14}+16 ! \times {17}^{15}+14 \times 15 \times 13 ! \times {17}^{16} }{ 14 \times 15 \times 13 ! \times {e}^{17} \times 16 ! }$
$\frac{ 210 \times 16 ! \times {17}^{13}+15 \times 16 ! \times {17}^{14}+16 ! \times {17}^{15}+14 \times 15 \times 13 ! \times {17}^{16} }{ 14 \times 15 \times 13 ! \times {e}^{17} \times 16 ! }$
$\frac{ 210 \times 16 ! \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+16 ! \times {17}^{15}+14 \times 15 \times 13 ! \times {17}^{16} }{ 14 \times 15 \times 13 ! \times {e}^{17} \times 16 ! }$
$\frac{ 210 \times 16 ! \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+14 \times 15 \times 13 ! \times {17}^{16} }{ 14 \times 15 \times 13 ! \times {e}^{17} \times 16 ! }$
$\frac{ 210 \times 16 ! \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+\left( 13 ! \times 14 \times 15 \right) \times {17}^{16} }{ 14 \times 15 \times 13 ! \times {e}^{17} \times 16 ! }$
$\frac{ 210 \times 16 ! \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+\left( 13 ! \times 14 \times 15 \right) \times {17}^{16} }{ \left( 13 ! \times 14 \times 15 \right) \times 16 ! \times {e}^{17} }$
$\frac{ 210 \times 20922789888000 \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+\left( 13 ! \times 14 \times 15 \right) \times {17}^{16} }{ \left( 13 ! \times 14 \times 15 \right) \times 16 ! \times {e}^{17} }$
$\frac{ 210 \times 20922789888000 \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+15 ! \times {17}^{16} }{ \left( 13 ! \times 14 \times 15 \right) \times 16 ! \times {e}^{17} }$
$\frac{ 210 \times 20922789888000 \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+15 ! \times {17}^{16} }{ 15 ! \times 16 ! \times {e}^{17} }$
$\frac{ 210 \times 20922789888000 \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+1307674368000 \times {17}^{16} }{ 15 ! \times 16 ! \times {e}^{17} }$
$\frac{ 210 \times 20922789888000 \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+1307674368000 \times {17}^{16} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 210 \times 20922789888000+15 \times 20922789888000 \times 17+20922789888000 \times {17}^{2}+1307674368000 \times {17}^{3} \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 4393785876480000+15 \times 20922789888000 \times 17+20922789888000 \times {17}^{2}+1307674368000 \times {17}^{3} \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 4393785876480000+5335311421440000+20922789888000 \times {17}^{2}+1307674368000 \times {17}^{3} \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 4393785876480000+5335311421440000+20922789888000 \times 289+1307674368000 \times {17}^{3} \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 4393785876480000+5335311421440000+20922789888000 \times 289+1307674368000 \times 4913 \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 9729097297920000+20922789888000 \times 289+1307674368000 \times 4913 \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 9729097297920000+6046686277632000+1307674368000 \times 4913 \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 9729097297920000+6046686277632000+6424604169984000 \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 15775783575552000+6424604169984000 \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ 22200387745536000 \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ 16977 \times {17}^{13} }{ 16 ! \times {e}^{17} }$
$\frac{ 16977 \times {17}^{13} }{ 20922789888000{e}^{17} }$
$\begin{align*}&\frac{ 5659 \times {17}^{13} }{ 6974263296000{e}^{17} } \\&\approx0.332714\end{align*}$

Frequently asked questions (FAQs)
What are the solutions for the quadratic equation 2x^2 + 7x - 3 = 0?
+
What is the value of f(x) when x = 4, if f(x) = x^3?
+
What is the variance of a set of numbers: 9, 12, 15, 18, and 21?
+
New questions in Mathematics
a runner wants to build endurance by running 9 mph for 20 min. How far will the runner travel in that time period?
Imagine that you are in an electronics store and you want to calculate the final price of a product after applying a discount. The product you are interested in has an original price of $1000 MN, but, for today, the store offers a 25% discount on all its products. Develop an algorithm that allows you to calculate the final price you will pay, but first point out the elements.
Calculate the equation of the tangent line ay=sin(x) cos⁡(x)en x=π/2
Given that y = ×(2x + 1)*, show that dy = (2x + 1)" (Ax + B) dx where n, A and B are constants to be found.
4X^2 25
The expected market return is 13,86% and the risk free rate 1%. What would then be the risk premium on the common stocks of a company which beta is 1,55? (in %, 2 decimal places)
"If three wolves catch three rabbits in three hours, how many wolves would it take to catch a hundred rabbits in a hundred hours?" The answer is the number of response units.
How many different ways can a psychology student select 5 subjects from a pool of 20 subjects and assign each one to a different experiment?
In a grocery store, when you take out 3 peppers and 4 carrots, there are 26 peppers and 46 carrots left. How many peppers and carrots were there initially?
Determine the reduced equation of the straight line that is perpendicular to the straight line r: y=4x-10 and passes through the origin of the Cartesian plane
A person decides to invest money in fixed income securities to redeem it at the end of 3 years. In this way, you make monthly deposits of R$300.00 in the 1st year, R$400.00 in the 2nd year and R$500.00 in the 3rd year. Calculate the amount, knowing that compound interest is 0.6% per month for the entire period. The answer is 15,828.60
sum of 7a-4b+5c, -7a+4b-6c
From 1975 through 2020 the mean annual gain of the Dow Jones Industrial Average was 652. A random sample of 34 years is selected from this population. What is the probability that the mean gain for the sample was between 400 and 800? Assume the standard deviation is 1539
A function is considered exponential when it has a base with positive values greater than zero and different from one, where the exponent is an unknown. An important characteristic of exponential functions is that they show rapid growth or decay as an independent variable increases or decreases. Given the function 25^(x+3)=125, it is calculated that x has the value of
If the regression equation is given by 4x –y + 5 = 0, then the slope of regression line of y on x is
Let x be an integer. Prove that x^2 is even if and only if is divisible by 4.
The mass of 120 molecules of X2C4 is 9127.2 amu. Identify the unknown atom, X, by finding the atomic mass. The atomic mass of C is 12.01 amu/atom
-5x=115
t+72/t=-17
A plant found at the bottom of a lake doubles in size every 10 days. Yeah It is known that in 300 days it has covered the entire lake, indicate how many days it will take to cover the entire lake four similar plants.