Question

In a physics degree course, there is an average dropout of 17 students in the first semester. What is the probability that the number of dropouts in the first semester in a randomly selected year has between 13 and 16 students?

83

likes
414 views

Answer to a math question In a physics degree course, there is an average dropout of 17 students in the first semester. What is the probability that the number of dropouts in the first semester in a randomly selected year has between 13 and 16 students?

Expert avatar
Esmeralda
4.7
91 Answers
$\frac{ {17}^{13} }{ 13 ! \times {e}^{17} }+\frac{ {e}^{-17} \times {17}^{14} }{ 14 ! }+\frac{ {e}^{-17} \times {17}^{15} }{ 15 ! }+\frac{ {e}^{-17} \times {17}^{16} }{ 16 ! }$
$\frac{ {17}^{13} }{ 13 ! \times {e}^{17} }+\frac{ {17}^{14} }{ 14 ! \times {e}^{17} }+\frac{ {e}^{-17} \times {17}^{15} }{ 15 ! }+\frac{ {e}^{-17} \times {17}^{16} }{ 16 ! }$
$\frac{ {17}^{13} }{ 13 ! \times {e}^{17} }+\frac{ {17}^{14} }{ 14 ! \times {e}^{17} }+\frac{ {17}^{15} }{ 15 ! \times {e}^{17} }+\frac{ {e}^{-17} \times {17}^{16} }{ 16 ! }$
$\frac{ {17}^{13} }{ 13 ! \times {e}^{17} }+\frac{ {17}^{14} }{ 14 ! \times {e}^{17} }+\frac{ {17}^{15} }{ 15 ! \times {e}^{17} }+\frac{ {17}^{16} }{ 16 ! \times {e}^{17} }$
$\frac{ {17}^{13} }{ 13 ! \times {e}^{17} }+\frac{ {17}^{14} }{ 14 \times 13 ! \times {e}^{17} }+\frac{ {17}^{15} }{ 15 ! \times {e}^{17} }+\frac{ {17}^{16} }{ 16 ! \times {e}^{17} }$
$\frac{ {17}^{13} }{ 13 ! \times {e}^{17} }+\frac{ {17}^{14} }{ 14 \times 13 ! \times {e}^{17} }+\frac{ {17}^{15} }{ 15 \times 14 \times 13 ! \times {e}^{17} }+\frac{ {17}^{16} }{ 16 ! \times {e}^{17} }$
$\frac{ 14 \times 15 \times 16 ! \times {17}^{13}+15 \times 16 ! \times {17}^{14}+16 ! \times {17}^{15}+14 \times 15 \times 13 ! \times {17}^{16} }{ 14 \times 15 \times 13 ! \times {e}^{17} \times 16 ! }$
$\frac{ 210 \times 16 ! \times {17}^{13}+15 \times 16 ! \times {17}^{14}+16 ! \times {17}^{15}+14 \times 15 \times 13 ! \times {17}^{16} }{ 14 \times 15 \times 13 ! \times {e}^{17} \times 16 ! }$
$\frac{ 210 \times 16 ! \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+16 ! \times {17}^{15}+14 \times 15 \times 13 ! \times {17}^{16} }{ 14 \times 15 \times 13 ! \times {e}^{17} \times 16 ! }$
$\frac{ 210 \times 16 ! \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+14 \times 15 \times 13 ! \times {17}^{16} }{ 14 \times 15 \times 13 ! \times {e}^{17} \times 16 ! }$
$\frac{ 210 \times 16 ! \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+\left( 13 ! \times 14 \times 15 \right) \times {17}^{16} }{ 14 \times 15 \times 13 ! \times {e}^{17} \times 16 ! }$
$\frac{ 210 \times 16 ! \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+\left( 13 ! \times 14 \times 15 \right) \times {17}^{16} }{ \left( 13 ! \times 14 \times 15 \right) \times 16 ! \times {e}^{17} }$
$\frac{ 210 \times 20922789888000 \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+\left( 13 ! \times 14 \times 15 \right) \times {17}^{16} }{ \left( 13 ! \times 14 \times 15 \right) \times 16 ! \times {e}^{17} }$
$\frac{ 210 \times 20922789888000 \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+15 ! \times {17}^{16} }{ \left( 13 ! \times 14 \times 15 \right) \times 16 ! \times {e}^{17} }$
$\frac{ 210 \times 20922789888000 \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+15 ! \times {17}^{16} }{ 15 ! \times 16 ! \times {e}^{17} }$
$\frac{ 210 \times 20922789888000 \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+1307674368000 \times {17}^{16} }{ 15 ! \times 16 ! \times {e}^{17} }$
$\frac{ 210 \times 20922789888000 \times {17}^{13}+15 \times 20922789888000 \times {17}^{14}+20922789888000 \times {17}^{15}+1307674368000 \times {17}^{16} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 210 \times 20922789888000+15 \times 20922789888000 \times 17+20922789888000 \times {17}^{2}+1307674368000 \times {17}^{3} \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 4393785876480000+15 \times 20922789888000 \times 17+20922789888000 \times {17}^{2}+1307674368000 \times {17}^{3} \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 4393785876480000+5335311421440000+20922789888000 \times {17}^{2}+1307674368000 \times {17}^{3} \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 4393785876480000+5335311421440000+20922789888000 \times 289+1307674368000 \times {17}^{3} \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 4393785876480000+5335311421440000+20922789888000 \times 289+1307674368000 \times 4913 \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 9729097297920000+20922789888000 \times 289+1307674368000 \times 4913 \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 9729097297920000+6046686277632000+1307674368000 \times 4913 \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 9729097297920000+6046686277632000+6424604169984000 \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ \left( 15775783575552000+6424604169984000 \right) \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ 22200387745536000 \times {17}^{13} }{ 1307674368000 \times 16 ! \times {e}^{17} }$
$\frac{ 16977 \times {17}^{13} }{ 16 ! \times {e}^{17} }$
$\frac{ 16977 \times {17}^{13} }{ 20922789888000{e}^{17} }$
$\begin{align*}&\frac{ 5659 \times {17}^{13} }{ 6974263296000{e}^{17} } \\&\approx0.332714\end{align*}$

Frequently asked questions (FAQs)
Question: Can you factor the expression 3x^2 - 7x + 2 using the distributive property?
+
What is the area of a triangle with side lengths 5, 9, and 12 using Heron's Formula?
+
Math question: What is the value of x in the equation log₂(x) = 5?
+
New questions in Mathematics
Revenue Maximization: A company sells products at a price of $50 per unit. The demand function is p = 100 - q, where p is the price and q is the quantity sold. How many units should they sell to maximize revenue?
If O(3,-2) is reflected across x = 2. What are the coordinates of O
The graph of the equation x²= 4py is a parabola with focus F(_,_) and directrix y=_____ Therefore, the graph of x²=12y is a parabola with focus F(_,_) and a directrix y=_____
Elliot opened a savings account and deposited $5000.00 as principal. The account earns 4% interest, compounded annually. How much interest will he earn after 5 years? Round your answer to the nearest cent.
4x567
Suppose a large shipment of cell phones contain 21% defective. If the sample of size 204 is selected, what is the probability that the sample proportion will differ from the population proportion by less than 4% round your answer to four decimal places
41/39 - 1/38
logy/logx + logz/logy + logt/logz = 8x².t x=?
A pair of die is thrown and the absolute difference of the two scores is recorded. What is the probability of the absolute difference being 4 or more?
How many anagrams of the word STROMEC there that do not contain STROM, MOST, MOC or CEST as a subword? By subword is meant anything that is created by omitting some letters - for example, the word EMROSCT contains both MOC and MOST as subwords.
Lim x → 0 (2x ^ 3 - 10x ^ 7) / 5 * x ^ 3 - 4x )=2
What’s the slope of a tangent line at x=1 for f(x)=x2. We can find the slopes of a sequence of secant lines that get closer and closer to the tangent line. What we are working towards is the process of finding a “limit” which is a foundational topic of calculus.
Three machines called A, B and C, produce 43%, 26% and 31% of the total production of a company, respectively. Furthermore, it has been detected that 8%, 2% and 1.6% of the product manufactured by these machines is defective. a) What is the probability that a product is not defective? b) A product is selected at random and found to be defective, what is the probability that it was manufactured on machine B?
9.25=2pi r solve for r
Jasminder has made 55% of the recipes in a particular cookbook. If there are 9 recipes that he has never made, how many recipes does the cookbook contain?
MAKING AN ARGUMENT You use synthetic division to divide f(x) by (x − a) and find that the remainder equals 15. Your friend concludes that f (15) = a. Is your friend correct? Explain your reasoning.
The grading on a $159,775 house comes to $3974.75. What percent of the total cost is this? (Express your answer to the nearest hundredth percent.)
What is the set-off agreement? Make your own example, describe and put in T accounts how you record transactions.
the length of the fenced in area is to be 5 ft greater than the width and the total amount of fencing to be used is 89 ft find the width and length
Paul invites 12 friends to his birthday. He wants to give 15 candies to everyone two. The candies are sold in packs of 25. How many should he buy? packages?