represents 2 raised to the power of 2, which is 2times2=4. Therefore, the answer is 4.",898,180,"2",{"id":44,"category":36,"text_question":45,"photo_question":38,"text_answer":46,"step_text_answer":8,"step_photo_answer":8,"views":47,"likes":48,"slug":49},538090,"The ratio of Adam’s weight to John’s weight is 6:5. If Adam weighs 48 KG, find John’s weight.","Let Adam's weight be represented as \\( A \\) and John's weight as \\( J \\). \u003Cbr />\n\u003Cbr />\nGiven the ratio is 6:5, we have:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{A}{J} = \\frac{6}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nWe know Adam's weight \\( A = 48 \\, \\text{KG} \\).\u003Cbr />\n\u003Cbr />\nSo substitute \\( A \\) in the ratio:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{48}{J} = \\frac{6}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nBy cross-multiplying:\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6J = 5 \\times 48 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6J = 240 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nNow, solve for \\( J \\):\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> J = \\frac{240}{6} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> J = 40 \\, \\text{KG} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore, John's weight is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40 \\text{ KG}\u003C/math-field>\u003C/math-field>.",591,118,"the-ratio-of-adam-s-weight-to-john-s-weight-is-6-5-if-adam-weighs-48-kg-find-john-s-weight",{"id":51,"category":36,"text_question":52,"photo_question":38,"text_answer":53,"step_text_answer":8,"step_photo_answer":8,"views":54,"likes":55,"slug":56},538089,"David cuts a rope 60 m long into two pieces in the ratio 2:3. What is the length of the shorter piece of rope?","1. Let the lengths of the two pieces of rope be represented as $2x$ and $3x$, since they are in the ratio 2:3.\u003Cbr />\n \u003Cbr />\n2. According to the problem, the sum of the lengths of the two pieces is 60 m, so:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x + 3x = 60 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 5x = 60 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Solve for $x$:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{60}{5} \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. The length of the shorter piece of rope is $2x$, so:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 2 \\times 12 \u003C/math-field>\u003C/math-field>\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 24 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Therefore, the length of the shorter piece of rope is:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 24 \\, \\text{m} \u003C/math-field>\u003C/math-field>",1166,233,"david-cuts-a-rope-60-m-long-into-two-pieces-in-the-ratio-2-3-what-is-the-length-of-the-shorter-piece-of-rope",{"id":58,"category":36,"text_question":59,"photo_question":38,"text_answer":60,"step_text_answer":8,"step_photo_answer":8,"views":61,"likes":62,"slug":63},538088,"Breanne made pineapple drinks by mixing pineapple syrup and water in the ratio 2:7. If she used 4 L of pineapple syrup, how much water did she use?","1. The ratio of pineapple syrup to water is 2:7. This means for every 2 parts of syrup, there are 7 parts of water.\u003Cbr />\n2. Breanne used 4 L of pineapple syrup. Set up the proportion:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{2}{7} = \\frac{4}{x} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n where \\( x \\) is the amount of water used.\u003Cbr />\n\u003Cbr />\n3. Cross-multiply to solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 7 \\cdot 4 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2x = 28 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = \\frac{28}{2} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Calculate:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 14 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Therefore, Breanne used 14 L of water. \u003Cbr />\n\u003Cbr />\nAnswer: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>14 \\text{ L}\u003C/math-field>\u003C/math-field>",783,157,"breanne-made-pineapple-drinks-by-mixing-pineapple-syrup-and-water-in-the-ratio-2-7-if-she-used-4-l-of-pineapple-syrup-how-much-water-did-she-use",{"id":65,"category":36,"text_question":66,"photo_question":38,"text_answer":67,"step_text_answer":8,"step_photo_answer":8,"views":68,"likes":69,"slug":70},538087,"y=-2(4)^x+1 +1 describe transformation","Solution:\u003Cbr />\n1. Given function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = -2(4)^{x+1} + 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Base function:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Identify transformations step-by-step:\u003Cbr />\n - **Translation horizontally**: The function has \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(x+1)\u003C/math-field>\u003C/math-field> as the exponent instead of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>. This indicates a horizontal shift to the left by 1 unit.\u003Cbr />\n - **Vertical stretch and reflection**: The coefficient before \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Vertical stretch**: The factor \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field> indicates that the function is stretched vertically by a factor of \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - **Reflection**: The negative sign indicates a reflection across the x-axis.\u003Cbr />\n - **Vertical translation**: The \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>+1\u003C/math-field>\u003C/math-field> outside the function indicates a vertical shift upwards by 1 unit.\u003Cbr />\n\u003Cbr />\n4. Describe the complete transformation:\u003Cbr />\n - The function \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = 4^x\u003C/math-field>\u003C/math-field> undergoes the following transformations: a horizontal shift to the left by 1 unit, a vertical stretch by a factor of 2, reflection across the x-axis, and finally a vertical shift upwards by 1 unit.",1255,251,"y-2-4-x-1-1-describe-transformation",{"id":72,"category":36,"text_question":73,"photo_question":38,"text_answer":74,"step_text_answer":8,"step_photo_answer":8,"views":75,"likes":76,"slug":77},538086,"Add the polynomials g(x)=x3-2x2+3x-1+4x2-x+2","Solution: \u003Cbr />\n1. Write down the given polynomials:\u003Cbr />\n- First polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>g(x) = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Second polynomial: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Align and add the polynomials term by term:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>g(x) = x^3 - 2x^2 + 3x - 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x^2 - x + 2\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Add the corresponding like terms:\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^2\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-2x^2 + 4x^2 = 2x^2\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x - x = 2x\u003C/math-field>\u003C/math-field>\u003Cbr />\n- For constant terms: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-1 + 2 = 1\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. The resulting polynomial after addition is:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x^3 + 2x^2 + 2x + 1\u003C/math-field>\u003C/math-field>",739,148,"add-the-polynomials-g-x-x3-2x2-3x-1-4x2-x-2",{"id":79,"category":36,"text_question":80,"photo_question":38,"text_answer":81,"step_text_answer":8,"step_photo_answer":8,"views":82,"likes":83,"slug":84},538085,"R=3m. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. The formula for the volume of a sphere is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi R^3 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. Substitute the given radius \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> R = 3 \\, \\text{m} \u003C/math-field>\u003C/math-field> into the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi (3)^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3^3 = 27 \u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Thus, the volume becomes:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 27 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify the expression:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4 \\times 27}{3} \\pi = 36 \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Use the approximation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field> :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 36 \\times 3.1416 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Calculate the approximate volume:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx113.0973\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>8. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>Therefore, the volume of the sphere is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 113.1 \\, \\text{m}^3 \u003C/math-field>\u003C/math-field> .",1203,241,"r-3m-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":86,"category":36,"text_question":87,"photo_question":38,"text_answer":88,"step_text_answer":8,"step_photo_answer":8,"views":89,"likes":90,"slug":91},538084,"Width of 12 in. Calculate the volume of the sphere. Round to the nearest tenth if necessary","1. Identify the radius of the sphere. Given the width is 12 inches, the diameter is 12 inches. Therefore, the radius is half of the diameter:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> r = \\frac{12}{2} = 6 \\, \\text{in} \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Use the formula for the volume of a sphere:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi r^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute the radius into the formula:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi (6)^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{4}{3} \\pi \\times 216 = \\frac{864}{3} \\pi = 288 \\pi \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Approximate using \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\pi \\approx 3.1416 \u003C/math-field>\u003C/math-field>:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 288 \\times 3.1416 = 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. The volume of the sphere, rounded to the nearest tenth, is approximately:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 904.8 \\, \\text{in}^3 \u003C/math-field>\u003C/math-field>",278,56,"width-of-12-in-calculate-the-volume-of-the-sphere-round-to-the-nearest-tenth-if-necessary",{"id":93,"category":36,"text_question":94,"photo_question":38,"text_answer":95,"step_text_answer":8,"step_photo_answer":8,"views":96,"likes":97,"slug":98},538083,"Calculate the volume (to the nearest tenth of a cubic centimeter) of a golf ball whose diameter is 4.267cm","1. The formula for the volume of a sphere is given by \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi r^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>2. The diameter of the golf ball is given as 4.267 cm, so the radius is half of that: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>r = \\frac{4.267}{2} = 2.1335 \\, \\text{cm}\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>3. Substitute the radius into the volume formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{4}{3} \\pi (2.1335)^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>4. Calculate the cube of the radius: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(2.1335)^3 = 9.707432537375\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>5. Substitute this back into the formula: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V=\\frac{4}{3}\\pi\\times9.707432537375\\approx40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .\u003Cbr>\u003Cbr>6. The volume of the golf ball is approximately \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>40.7\\,\\text{cm}^3\u003C/math-field>\u003C/math-field> .",1440,288,"calculate-the-volume-to-the-nearest-tenth-of-a-cubic-centimeter-of-a-golf-ball-whose-diameter-is-4-267cm",{"id":100,"category":36,"text_question":101,"photo_question":38,"text_answer":102,"step_text_answer":8,"step_photo_answer":8,"views":103,"likes":104,"slug":105},538082,"Find the length of each base edge (to the nearest tenth of a meter) of the 24m tall glass square pyramids of the Muttart Conservatory in Alberta, Canada, if each contains 5280m^3 of space","1. Volume V of a square pyramid is given by the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{1}{3} B h\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>where B is the area of the base and h is the height of the pyramid.\u003Cbr>\u003Cbr>2. Given that the height h = 24 m and the volume V = 5280 m^3.\u003Cbr>\u003Cbr>3. The base is square, so if the side length of the base is s, then:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>B = s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substituting into the volume formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = \\frac{1}{3} s^2 \\times 24\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify and solve for s^2:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = 8 s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s^2 = \\frac{5280}{8} = 660\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Solve for s:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{660} \\approx 25.7\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. To find the length of each base edge to the nearest tenth of a meter, compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s \\approx 25.7 \\, \\text{m}\u003C/math-field>\u003C/math-field>",418,84,"find-the-length-of-each-base-edge-to-the-nearest-tenth-of-a-meter-of-the-24m-tall-glass-square-pyramids-of-the-muttart-conservatory-in-alberta-canada-if-each-contains-5280m-3-of-space",{"id":107,"category":36,"text_question":108,"photo_question":38,"text_answer":109,"step_text_answer":8,"step_photo_answer":8,"views":110,"likes":111,"slug":112},538081,"An observer is 150 meters away\n distance of a hot air balloon online\n straight line at ground level. From your position,\n measures an elevation angle of 40° up to\n the base of the balloon. At what height is\n find the hot air balloon?","Solution:\u003Cbr />\n1. Dado:\u003Cbr />\n- Distancia horizontal desde el observador hasta la base del globo: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>d = 150 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n- Ángulo de elevación: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\theta = 40^{\\circ}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Usamos la función tangente para encontrar la altura \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field> del globo aerostático. La tangente de un ángulo en un triángulo rectángulo es la razón entre la altura y la distancia horizontal:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(\\theta) = \\frac{h}{d}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Sustituimos los valores conocidos en la ecuación:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(40^{\\circ}) = \\frac{h}{150}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Resolvemos para \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h = 150 \\times \\tan(40^{\\circ})\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Calculamos el valor numérico:\u003Cbr />\n* Usando una calculadora, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\tan(40^{\\circ}) \\approx 0.8391\u003C/math-field>\u003C/math-field>\u003Cbr />\n* Entonces: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>h \\approx 150 \\times 0.8391 = 125.865 \\ m\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nLa altura del globo aerostático es aproximadamente \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>125.865 \\ m\u003C/math-field>\u003C/math-field>.",667,133,"an-observer-is-150-meters-away-distance-of-a-hot-air-balloon-online-straight-line-at-ground-level-from-your-position-measures-an-elevation-angle-of-40-up-to-the-base-of-the-balloon-at-what-hei",{"id":114,"category":36,"text_question":115,"photo_question":38,"text_answer":116,"step_text_answer":8,"step_photo_answer":8,"views":117,"likes":118,"slug":119},538080,"A plane ticket has gone up 18%, now costing $4,720. How much did it cost before the increase?","\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Solution:}\u003C/math-field>\u003C/math-field>\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> be the original price of the plane ticket.\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> increased by 18% means the new price is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P + 0.18P = 1.18P\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Set up the equation based on the problem statement:\u003Cbr />\n- The new price \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>= 4,720\u003C/math-field>\u003C/math-field>.\u003Cbr />\n- Therefore, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1.18P = 4,720\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n3. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field>:\u003Cbr />\n- Divide both sides by 1.18 to isolate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field>.\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P = \\frac{4,720}{1.18}\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n4. Calculate:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P \\approx 4,000\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\text{Answer:}\u003C/math-field>\u003C/math-field>\u003Cbr />\n- The original price of the plane ticket was approximately USD 4,000.",726,145,"a-plane-ticket-has-gone-up-18-now-costing-4-720-how-much-did-it-cost-before-the-increase",{"id":121,"category":36,"text_question":122,"photo_question":38,"text_answer":123,"step_text_answer":8,"step_photo_answer":8,"views":124,"likes":125,"slug":126},538078,"H=8mm, r=2mm. Calculate the volume of the cone round to the nearest tenth if necessary","1. Use the formula for the volume of a cone: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi r^2 H \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Substitute the given values: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> H = 8 \\, \\text{mm}, \\, r = 2 \\, \\text{mm} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (2)^2 (8) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \\( (2)^2 \\):\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (2)^2 = 4 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substitute and compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (4)(8) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{1}{3} \\pi (32) \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Calculate the product: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V = \\frac{32}{3} \\pi \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Calculate:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V\\approx33.51032\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Round to the nearest tenth:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 33.5 \\, \\text{mm}^3 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>This is the answer: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> V \\approx 33.5 \\, \\text{mm}^3 \u003C/math-field>\u003C/math-field>",631,126,"h-8mm-r-2mm-calculate-the-volume-of-the-cone-round-to-the-nearest-tenth-if-necessary",{"id":128,"category":36,"text_question":129,"photo_question":38,"text_answer":130,"step_text_answer":8,"step_photo_answer":8,"views":131,"likes":132,"slug":133},538076,"Dividing 218 or 172 by the natural number n, you get a remainder of 11. Dividing n by 11, you get a remainder equal to:","** \u003Cbr>\u003Cbr>1. Since dividing 218 by n gives a remainder of 11, 218 - 11 = 207 is divisible by n : \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>207\\equiv0\\pmod{n}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Similarly, dividing 172 by n gives a remainder of 11, so 172 - 11 = 161 is divisible by n :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>161\\equiv0\\pmod{n}\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. n must be a common divisor of 207 and 161. Find the greatest common divisor of 207 and 161:\u003Cbr>\u003Cbr>- First, find the difference: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 207 - 161 = 46 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Find the prime factorization of 46:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 46 = 2 \\times 23 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Prime factorization of 161:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 161 = 7 \\times 23 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Common factor is 23.\u003Cbr>\u003Cbr>4. Therefore, the possible value of n should be 23 (since other divisions have factors that don't divide both). Now, divide n = 23 by 11:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 23 \\div 11 = 2 \\, \\text{R} \\, 1 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Thus, the remainder of dividing n by 11 is 1\u003Cbr>\u003Cbr>",1233,247,"dividing-218-or-172-by-the-natural-number-n-you-get-a-remainder-of-11-dividing-n-by-11-you-get-a-remainder-equal-to",{"id":135,"category":36,"text_question":136,"photo_question":38,"text_answer":137,"step_text_answer":8,"step_photo_answer":8,"views":138,"likes":139,"slug":140},538074,"R=24 inches\nCalculate the surface area of the sphere","1. The formula to calculate the surface area of a sphere is given by: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 4 \\pi R^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Substitute the value of the radius \\( R = 24 \\) inches into the formula: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> A = 4 \\pi (24)^2 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate the square of the radius:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> (24)^2 = 576 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Multiply by 4:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 4 \\times 576 = 2304 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. The surface area is:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>A=2304\\pi=7238.23\u003C/math-field>\u003C/math-field> square inches \u003Cbr>\u003Cbr>Therefore, the surface area of the sphere is 7238.23 square inches.",923,185,"r-24-inches-calculate-the-surface-area-of-the-sphere",{"id":142,"category":36,"text_question":143,"photo_question":38,"text_answer":144,"step_text_answer":8,"step_photo_answer":8,"views":145,"likes":146,"slug":147},538073,"Andrés's age is three times Quan's.\n plus wins and both ages add up to 69 years. Nillar\n both ages.","Solution:\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field> be the age of Andrés.\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field> be the age of Quan.\u003Cbr />\n\u003Cbr />\n2. Set up the equations based on the problem:\u003Cbr />\n- Andrés is three times as old as Quan: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field>\u003Cbr />\n- The sum of their ages is 69: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a + q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field> into the second equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3q + q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify the equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4q = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q = \\frac{69}{4}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Compute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>q = 17.25\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Find \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field> using the equation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3q\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 3 \\times 17.25\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n8. Compute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>a = 51.75\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nTherefore:\u003Cbr />\n- Quan is approximately 17.25 years old.\u003Cbr />\n- Andrés is approximately 51.75 years old.",553,111,"andres-s-age-is-three-times-quan-s-plus-wins-and-both-ages-add-up-to-69-years-nillar-both-ages",{"id":149,"category":36,"text_question":150,"photo_question":38,"text_answer":151,"step_text_answer":8,"step_photo_answer":8,"views":152,"likes":153,"slug":154},538072,"Andrew's age is three times John's plus nine years, and their ages add up to 69 years. Find both ages.","Solution:\u003Cbr />\n1. Define variables:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> be Juan's age.\u003Cbr />\n- Andrés' age is then \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Set up the equation for the total age:\u003Cbr />\n- Juan's age \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field> plus Andrés' age \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9\u003C/math-field>\u003C/math-field> equals 69.\u003Cbr />\n\u003Cbr />\n3. Equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + (3x + 9) = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Simplify and solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + 3x + 9 = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x + 9 = 69\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x = 60\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 15\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Find Andrés' age:\u003Cbr />\n- Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 15\u003C/math-field>\u003C/math-field> into Andrés' age expression:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x + 9 = 3(15) + 9 = 45 + 9 = 54\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Therefore, the ages are:\u003Cbr />\n- Juan: 15 years\u003Cbr />\n- Andrés: 54 years",531,106,"andrew-s-age-is-three-times-john-s-plus-nine-years-and-their-ages-add-up-to-69-years-find-both-ages",{"id":156,"category":36,"text_question":157,"photo_question":38,"text_answer":158,"step_text_answer":8,"step_photo_answer":8,"views":159,"likes":160,"slug":161},538071,"Solve the following linear equations:\n 1) 5x-3= 3X+7","Solution:\u003Cbr />\n1. Given Equation:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3 = 3x + 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Subtract \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3x\u003C/math-field>\u003C/math-field> from both sides to simplify:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5x - 3x - 3 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Combine like terms:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x - 3 = 7\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Add 3 to both sides to isolate the term with the variable:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x = 10\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Divide both sides by 2 to solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 5\u003C/math-field>\u003C/math-field>",1382,276,"solve-the-following-linear-equations-1-5x-3-3x-7",{"id":163,"category":36,"text_question":164,"photo_question":38,"text_answer":165,"step_text_answer":8,"step_photo_answer":8,"views":166,"likes":167,"slug":168},538070,"Solve the following linear equations:\n\n 2) 2x+4- 5x = x+8-5×","1. Start with the original equation: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x + 4 - 5x = x + 8 - 5x\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Combine like terms on both sides:\u003Cbr>\u003Cbr>- Left side: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>2x - 5x + 4 = -3x + 4\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>- Right side: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x - 5x + 8 = -4x + 8\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>So the equation becomes:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>-3x + 4 = -4x + 8\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Add \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4x\u003C/math-field>\u003C/math-field> to both sides to get:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x + 4 = 8\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Subtract \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>4\u003C/math-field>\u003C/math-field> from both sides:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>x = 4\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>",674,135,"solve-the-following-linear-equations-2-2x-4-5x-x-8-5",{"id":170,"category":36,"text_question":171,"photo_question":38,"text_answer":172,"step_text_answer":8,"step_photo_answer":8,"views":173,"likes":174,"slug":175},538069,"15=75% of ?","\u003Cdiv>\n \n \u003Cmath-field style=\"font-size: 16px;padding: 8px;border-radius: 8px;border: 1px solid rgba(0, 0, 0, .3);box-shadow: 0 0 0 rgba(0, 0, 0, .2)\n\" read-only>$\\frac{x}{15}=\\frac{4}{3}$\u003C/math-field>\n \u003Cbr>\n \u003C/div>\n \n \u003Cdiv>\n \n \u003Cmath-field style=\"font-size: 16px;padding: 8px;border-radius: 8px;border: 1px solid rgba(0, 0, 0, .3);box-shadow: 0 0 0 rgba(0, 0, 0, .2)\n\" read-only>$x=20$\u003C/math-field>\n \u003Cbr>\n \u003C/div>",467,93,"15-75-of",{"first":6,"last":177,"prev":8,"next":10},188,{"current_page":6,"from":6,"last_page":177,"links":179,"path":212,"per_page":213,"to":213,"total":214},[180,183,185,187,189,191,193,196,199,202,205,208,210],{"url":6,"label":181,"active":182},"1",true,{"url":10,"label":42,"active":184},false,{"url":13,"label":186,"active":184},"3",{"url":16,"label":188,"active":184},"4",{"url":19,"label":190,"active":184},"5",{"url":22,"label":192,"active":184},"6",{"url":194,"label":195,"active":184},7,"7",{"url":197,"label":198,"active":184},8,"8",{"url":200,"label":201,"active":184},9,"9",{"url":203,"label":204,"active":184},10,"10",{"url":206,"label":207,"active":184},187,"187",{"url":177,"label":209,"active":184},"188",{"url":10,"label":211,"active":184},"Next »","https://api.math-master.org/api/question",20,3741,{"data":216},{"questions":217},[218,222,226,230,234,238,242,246,250,254,258,262,266,270,274,278,282,286,290,294],{"id":219,"category":36,"text_question":220,"slug":221},532041,"The strength of Kefexin oral suspension is 100 mg/ml.\nNora has been prescribed cefalexin at a dose of 50 mg/kg/day divided in two single doses.\nNora weighs 14 kg.\nHow many milliliters of solution for Nora should be given as a single dose?","the-strength-of-kefexin-oral-suspension-is-100-mg-ml-nora-has-been-prescribed-cefalexin-at-a-dose-of-50-mg-kg-day-divided-in-two-single-doses-nora-weighs-14-kg-how-many-milliliters-of-solution-for",{"id":223,"category":36,"text_question":224,"slug":225},532092,"-11+29-18","11-29-18",{"id":227,"category":36,"text_question":228,"slug":229},532313,"STUDENTS IN A CLASS LEARN ONLY ONE FOREIGN LANGUAGE. two-sevenths of the students learn German, half of the students learn Spanish, and the remaining six students learn Italian. what is the number of students in this class? detail your reasoning carefully.","students-in-a-class-learn-only-one-foreign-language-two-sevenths-of-the-students-learn-german-half-of-the-students-learn-spanish-and-the-remaining-six-students-learn-italian-what-is-the-number-of",{"id":231,"category":36,"text_question":232,"slug":233},533915,"3x+5y=11\r\n2x-3y=1","3x-5y-11-2x-3y-1",{"id":235,"category":36,"text_question":236,"slug":237},533940,"4.2x10^_6 convert to standard notation","4-2x10-6-convert-to-standard-notation",{"id":239,"category":36,"text_question":240,"slug":241},533959,"What will be the density of a fluid whose volume is 130 cubic meters\n contains 16 technical units of mass? If required Consider g=10 m/s2","what-will-be-the-density-of-a-fluid-whose-volume-is-130-cubic-meters-contains-16-technical-units-of-mass-if-required-consider-g-10-m-s2",{"id":243,"category":36,"text_question":244,"slug":245},534129,"Determine the general equation of the straight line that passes through the point P (2;-3) and is parallel to the straight line with the equation 5x – 2y 1 = 0:","determine-the-general-equation-of-the-straight-line-that-passes-through-the-point-p-2-3-and-is-parallel-to-the-straight-line-with-the-equation-5x-2y-1-0",{"id":247,"category":36,"text_question":248,"slug":249},534135,"What is 28 marks out of 56 as a percentage","what-is-28-marks-out-of-56-as-a-percentage",{"id":251,"category":36,"text_question":252,"slug":253},534151,"Suppose you have a sample of 100 values from a population with mean mu = 500 and standard deviation sigma = 80. Given that P(z \u003C −1.25) = 0.10565 and P(z \u003C 1.25) = 0.89435, the probability that the sample mean is in the interval (490, 510) is:\n\n A)78.87%\n B)89.44%\n C)10.57%\n D)68.27%","suppose-you-have-a-sample-of-100-values-from-a-population-with-mean-mu-500-and-standard-deviation-sigma-80-given-that-p-z-1-25-0-10565-and-p-z-1-25-0-89435-the-probability-that",{"id":255,"category":36,"text_question":256,"slug":257},534177,"The sum of two numbers is 144. Double the first number minus thrice the second number is equal to 63. Determine the first two numbers.","the-sum-of-two-numbers-is-144-double-the-first-number-minus-thrice-the-second-number-is-equal-to-63-determine-the-first-two-numbers",{"id":259,"category":36,"text_question":260,"slug":261},534225,"A warehouse employs 23 workers on first​ shift, 19 workers on second​ shift, and 12 workers on third shift. Eight workers are chosen at random to be interviewed about the work environment. Find the probability of choosing exactly five first ​-shift workers.","a-warehouse-employs-23-workers-on-first-shift-19-workers-on-second-shift-and-12-workers-on-third-shift-eight-workers-are-chosen-at-random-to-be-interviewed-about-the-work-environment-find-the",{"id":263,"category":36,"text_question":264,"slug":265},534247,"Estimate the quotient for 3.24 ÷ 82","estimate-the-quotient-for-3-24-82",{"id":267,"category":36,"text_question":268,"slug":269},534280,"A machine produces 255 bolts in 24 minutes. At the same rate, how many bolts would be produced in 40 minutes?","a-machine-produces-255-bolts-in-24-minutes-at-the-same-rate-how-many-bolts-would-be-produced-in-40-minutes",{"id":271,"category":36,"text_question":272,"slug":273},534286,"From 1975 through 2020 the mean annual gain of the Dow Jones Industrial Average was 652. A random sample of 34 years is selected from this population. What is the probability that the mean gain for the sample was between 400 and 800? Assume the standard deviation is 1539","from-1975-through-2020-the-mean-annual-gain-of-the-dow-jones-industrial-average-was-652-a-random-sample-of-34-years-is-selected-from-this-population-what-is-the-probability-that-the-mean-gain-for-th",{"id":275,"category":36,"text_question":276,"slug":277},534304,"2)A tourist has 15 pairs of pants in his hotel room closet. Suppose 5 are blue and the rest are black. The tourist leaves his room twice a day. He takes a pair of pants and puts them on, the tourist leaves the first pair of pants in the closet again and takes another one and puts them on. What is the probability that the two pants chosen are black?","2-a-tourist-has-15-pairs-of-pants-in-his-hotel-room-closet-suppose-5-are-blue-and-the-rest-are-black-the-tourist-leaves-his-room-twice-a-day-he-takes-a-pair-of-pants-and-puts-them-on-the-tourist-l",{"id":279,"category":36,"text_question":280,"slug":281},534333,"-1%2F2x-4%3D18","1-2f2x-4-3d18",{"id":283,"category":36,"text_question":284,"slug":285},534497,"X^3 - x^2 - 4 = 0, what are the values of x?","x-3-x-2-4-0-what-are-the-values-of-x",{"id":287,"category":36,"text_question":288,"slug":289},534524,"x²-7x+12=0","x-7x-12-0",{"id":291,"category":36,"text_question":292,"slug":293},534563,"How much does 7.2 moles of ammonium dichromate weigh? (NH4)2Cr2O7","how-much-does-7-2-moles-of-ammonium-dichromate-weigh-nh4-2cr2o7",{"id":295,"category":36,"text_question":296,"slug":297},534621,"5a-3.(a-7)=-3","5a-3-a-7-3",{"data":299},{"id":300,"category":36,"slug":301,"text_question":302,"photo_question":8,"text_answer":303,"step_text_answer":8,"step_photo_answer":8,"views":304,"likes":305,"expert":306},537332,"school-speed-zone-is-30-km-h-three-cars-a-b-andcaregoingatspeedsva-8m-s-vb-9-m-s-and-vc-10-m-s-the-cars-that-will-receive-speeding-tickets-are","school speed-zone is 30 km/h. Three cars A,B,andCaregoingatspeedsvA =8m/s,vB = 9 m/s, and vc = 10 m/s. The cars that will receive speeding tickets are:","Solution:\u003Cbr />\n\u003Cbr />\n1. Convert the speed limit to meters per second.\u003Cbr />\n - The speed limit is 30 km/h.\u003Cbr />\n - Convert km/h to m/s: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>1 \\text{ km/h} = \\frac{1}{3.6} \\text{ m/s}\u003C/math-field>\u003C/math-field>\u003Cbr />\n - Therefore, \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>30 \\text{ km/h} = 30 \\times \\frac{1}{3.6} \\text{ m/s} = \\frac{30}{3.6} \\text{ m/s} = 8.33 \\text{ m/s}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Compare the speeds of cars A, B, and C to the speed limit.\u003Cbr />\n - Speed of car A: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>8 \\text{ m/s}\u003C/math-field>\u003C/math-field> (less than \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>8.33 \\text{ m/s}\u003C/math-field>\u003C/math-field>, so car A is not speeding)\u003Cbr />\n - Speed of car B: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>9 \\text{ m/s}\u003C/math-field>\u003C/math-field> (greater than \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>8.33 \\text{ m/s}\u003C/math-field>\u003C/math-field>, so car B is speeding)\u003Cbr />\n - Speed of car C: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>10 \\text{ m/s}\u003C/math-field>\u003C/math-field> (greater than \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>8.33 \\text{ m/s}\u003C/math-field>\u003C/math-field>, so car C is speeding)\u003Cbr />\n\u003Cbr />\n3. Conclusion:\u003Cbr />\n - Cars B and C are exceeding the speed limit and will receive speeding tickets.",608,122,{"id":307,"name":308,"photo":309,"biography":310,"created_at":8,"updated_at":8,"rating":311,"total_answer":312},37,"Darrell","https://api.math-master.org/img/experts/37/37.webp","Throughout my childhood, I was frequently challenged to answer many types of mathematical puzzles. Most of the time, I did not answer the problem, and my classmates laughed at me, but at the time, I was filled with enthusiasm and success many times. After completing my school education, I did MSc at GCU before joining BUITEMS University as a math lecturer, where I teach several courses in pure and applied mathematics. As part of my profession, I engage in many workshops to help students develop an interest in mathematics. I did MS from university of Sargodha and now doing PhD in Dr. Abdul slam Scholl of mathematical sciences (ASSMS). I think the journey of a math teacher is not just about formulas and calculations; it's about fostering a deep love for learning, empowering students to conquer challenges, and illuminating the path to a world of infinite possibilities.",4.5,96,{"data":314},{"questions":315},[316,320,324,328,332,336,340,344,348,352,356,360,364,368,372,376,380,384,388,389],{"id":317,"category":36,"text_question":318,"slug":319},532087,"A person who weighs 200 pounds on earth would weigh about 32 pounds on the moon. Find the weight of a person on earth who would weigh 15 pounds on the moon.","a-person-who-weighs-200-pounds-on-earth-would-weigh-about-32-pounds-on-the-moon-find-the-weight-of-a-person-on-earth-who-would-weigh-15-pounds-on-the-moon",{"id":321,"category":36,"text_question":322,"slug":323},533925,"58+861-87","58-861-87",{"id":325,"category":36,"text_question":326,"slug":327},533952,"A brass cube with an edge of 3 cm at 40 °C increased its volume to 27.12 cm3. What is the final temperature that achieves this increase?","a-brass-cube-with-an-edge-of-3-cm-at-40-c-increased-its-volume-to-27-12-cm3-what-is-the-final-temperature-that-achieves-this-increase",{"id":329,"category":36,"text_question":330,"slug":331},533965,"In a store there are packets of chocolate, strawberry, tutti-frutti, lemon, grape and banana sweets. If a person needs to choose 4 flavors of candy from those available, how many ways can they make that choice?","in-a-store-there-are-packets-of-chocolate-strawberry-tutti-frutti-lemon-grape-and-banana-sweets-if-a-person-needs-to-choose-4-flavors-of-candy-from-those-available-how-many-ways-can-they-make-th",{"id":333,"category":36,"text_question":334,"slug":335},534038,"What is the r.p.m. required to drill a 13/16\" hole in mild steel if the cutting speed is 100 feet per minute?","what-is-the-r-p-m-required-to-drill-a-13-16-hole-in-mild-steel-if-the-cutting-speed-is-100-feet-per-minute",{"id":337,"category":36,"text_question":338,"slug":339},534134,"find x in the equation\n 2x-4=6","find-x-in-the-equation-2x-4-6",{"id":341,"category":36,"text_question":342,"slug":343},534146,"I need to know what 20% or £3292.75","i-need-to-know-what-20-or-3292-75",{"id":345,"category":36,"text_question":346,"slug":347},534172,"Lim x → 0 (2x ^ 3 - 10x ^ 7) / 5 * x ^ 3 - 4x )=2","lim-x-0-2x-3-10x-7-5-x-3-4x-2",{"id":349,"category":36,"text_question":350,"slug":351},534213,"Suppose that you use 4.29 g of Iron in the chemical reaction: 2Fe(s) + 3\nCu2 + (aq) 2Fe 3 + (aq) + 3Cu(s\n) - . What is the theoretical yield of Cu (s), in grams?","suppose-that-you-use-4-29-g-of-iron-in-the-chemical-reaction-2fe-s-3-cu2-aq-2fe-3-aq-3cu-s-what-is-the-theoretical-yield-of-cu-s-in-grams",{"id":353,"category":36,"text_question":354,"slug":355},534250,"You are the newly appointed transport manager for Super Trucking (Pty) Ltd, which operates as a logistics service provider for various industries throughout southern Africa. One of these vehicles is a 4x2 Rigid Truck and drawbar trailer that covers 48,000 km per year. Use the assumptions below to answer the following questions (show all calculations):\r\n\r\nOverheads\r\n\r\nR 176,200\r\n\r\nCost of capital (% of purchase price per annum)\r\n\r\n11.25%\r\n\r\nAnnual License Fees—Truck\r\n\r\nR 16,100\r\n\r\nDriver Monthly cost\r\n\r\nR 18,700\r\n\r\nAssistant Monthly cost\r\n\r\nR 10,500\r\n\r\nPurchase price: - Truck\r\n\r\nR 1,130,000\r\n\r\nDepreciation: straight line method\r\n\r\n \r\nTruck residual value\r\n\r\n25%\r\n\r\nTruck economic life (years)\r\n\r\n5\r\n\r\nPurchase price: Trailer\r\n\r\nR 370,000\r\n\r\nTyre usage and cost (c/km)\r\n\r\n127\r\n\r\nTrailer residual value\r\n\r\n0%\r\n\r\nTrailer economic life (years)\r\n\r\n10\r\n\r\nAnnual License Fees—Trailer\r\n\r\nR 7,700\r\n\r\nFuel consumption (liters/100km)\r\n\r\n22\r\n\r\nFuel price (c/liter)\r\n\r\n2053\r\n\r\nInsurance (% of cost price)\r\n\r\n7.5%\r\n\r\nMaintenance cost (c/km)\r\n\r\n105\r\n\r\nDistance travelled per year (km)\r\n\r\n48000\r\n\r\nTruck (tyres)\r\n\r\n6\r\n\r\nTrailer (tyres)\r\n\r\n8\r\n\r\nNew tyre price (each)\r\n\r\nR 13,400\r\n\r\nLubricants (% of fuel cost)\r\n\r\n2.5%\r\n\r\nWorking weeks\r\n\r\n50\r\n\r\nWorking days\r\n\r\n5 days / week\r\n\r\nProfit margin\r\n\r\n25%\r\n\r\nVAT\r\n\r\n15%\r\n\r\n\r\n\r\nQ1. Calculate the annual total vehicle costs (TVC)","you-are-the-newly-appointed-transport-manager-for-super-trucking-pty-ltd-which-operates-as-a-logistics-service-provider-for-various-industries-throughout-southern-africa-one-of-these-vehicles-is-a",{"id":357,"category":36,"text_question":358,"slug":359},534278,"Use a pattern to prove that (-2)-(-3)=1","use-a-pattern-to-prove-that-2-3-1",{"id":361,"category":36,"text_question":362,"slug":363},534330,"9 x² + 2x + 1 = 0","9-x-2x-1-0",{"id":365,"category":36,"text_question":366,"slug":367},534371,"Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π).\ncos30=0","determine-a-general-formula-or-formulas-for-the-solution-to-the-following-equation-then-determine-the-specific-solutions-if-any-on-the-interval-0-2-cos30-0",{"id":369,"category":36,"text_question":370,"slug":371},534431,"What is the value of f(-3) for the function X squared+5x-8=","what-is-the-value-of-f-3-for-the-function-x-squared-5x-8",{"id":373,"category":36,"text_question":374,"slug":375},534432,"Calculate the change in internal energy of a gas that receives 16000 J of heat at constant pressure (1.3 atm) expanding from 0.100 m3 to 0.200 m3.\n\n Question 1Answer\n to.\n 7050J\n\n b.\n 2125J\n\n c.\n None of the above\n\n d.\n 2828J\n\n and.\n 10295 J","calculate-the-change-in-internal-energy-of-a-gas-that-receives-16000-j-of-heat-at-constant-pressure-1-3-atm-expanding-from-0-100-m3-to-0-200-m3-question-1answer-to-7050j-b-2125j-c-none",{"id":377,"category":36,"text_question":378,"slug":379},534479,"Solve for B write your answer as a fraction or as a whole number. B-1/7=4","solve-for-b-write-your-answer-as-a-fraction-or-as-a-whole-number-b-1-7-4",{"id":381,"category":36,"text_question":382,"slug":383},534488,"7- A printing company found in its investigations that there were an average of 6 errors in 150-page prints. Based on this information, what is the probability of there being 48 errors in a 1200-page job?","7-a-printing-company-found-in-its-investigations-that-there-were-an-average-of-6-errors-in-150-page-prints-based-on-this-information-what-is-the-probability-of-there-being-48-errors-in-a-1200-page",{"id":385,"category":36,"text_question":386,"slug":387},534609,"Sally’s sales for last Sunday were $1,278. That was an increase of 6.5% over her sales for the previous\nSaturday. What were her sales for the previous Saturday?","sally-s-sales-for-last-sunday-were-1-278-that-was-an-increase-of-6-5-over-her-sales-for-the-previous-saturday-what-were-her-sales-for-the-previous-saturday",{"id":295,"category":36,"text_question":296,"slug":297},{"id":390,"category":36,"text_question":391,"slug":392},534698,"Question 3\r\nA square has a perimeter given by the algebraic expression 24x – 16. Write the algebraic expression that represents one of its sides.","question-3-a-square-has-a-perimeter-given-by-the-algebraic-expression-24x-16-write-the-algebraic-expression-that-represents-one-of-its-sides",{"data":394},[395,399,403],{"id":396,"question":397,"answer":398},154045,"Math question: What is the smallest and largest value that a continuous function can attain on a closed interval?","The Extreme Value Theorem states that on a closed interval, the function will have a minimum and maximum value. The smallest value will be the minimum and the largest value will be the maximum.",{"id":400,"question":401,"answer":402},114155,"What is the measure of the third angle in an isosceles triangle if one angle is 80°?","The measure of the third angle in an isosceles triangle is 100° because all angles in an isosceles triangle are equal, and the sum of angles in a triangle is always 180°. Hence, 80° + 80° + x = 180°, where x represents the third angle. Solving for x gives x = 100°.",{"id":404,"question":405,"answer":406},106385,"Math question: Consider the inequality system: x + 2y ≤ 10 and x - 3y ≥ -12. Graph these two-variable inequalities.","Answer: To graph x + 2y ≤ 10, we plot the line x + 2y = 10 and shade the region below it. For x - 3y ≥ -12, we plot x - 3y = -12 and shade above it. The solution is the intersection of these shaded regions.",{"$sicons":408},{"bxl:facebook-circle":409,"bxl:instagram":413,"mdi:web":415,"la:apple":417,"ph:google-logo-bold":420,"ph:google-logo":423},{"left":410,"top":410,"width":411,"height":411,"rotate":410,"vFlip":184,"hFlip":184,"body":412},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":410,"top":410,"width":411,"height":411,"rotate":410,"vFlip":184,"hFlip":184,"body":414},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":410,"top":410,"width":411,"height":411,"rotate":410,"vFlip":184,"hFlip":184,"body":416},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":410,"top":410,"width":418,"height":418,"rotate":410,"vFlip":184,"hFlip":184,"body":419},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":410,"top":410,"width":421,"height":421,"rotate":410,"vFlip":184,"hFlip":184,"body":422},256,"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"left":410,"top":410,"width":421,"height":421,"rotate":410,"vFlip":184,"hFlip":184,"body":424},"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"oVhJaef6Ht":8,"t96FybqVTi":8,"5lK7LS5al0":8,"5oSQ2a90xd":8,"u4XXZNyB6f":8,"2QISyIzlyM":8,"HGsO2Ckakl":8},"/general/school-speed-zone-is-30-km-h-three-cars-a-b-andcaregoingatspeedsva-8m-s-vb-9-m-s-and-vc-10-m-s-the-cars-that-will-receive-speeding-tickets-are"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}