$\int{ 5{x}^{4}+\frac{ 1 }{ {e}^{3x} }-\frac{ 2 }{ x }-1 } \mathrm{d} x$
$\int{ 5{x}^{4} } \mathrm{d} x+\int{ \frac{ 1 }{ {e}^{3x} } } \mathrm{d} x-\int{ \frac{ 2 }{ x } } \mathrm{d} x-\int{ 1 } \mathrm{d} x$
${x}^{5}+\int{ \frac{ 1 }{ {e}^{3x} } } \mathrm{d} x-\int{ \frac{ 2 }{ x } } \mathrm{d} x-\int{ 1 } \mathrm{d} x$
${x}^{5}-\frac{ 1 }{ 3{e}^{3x} }-\int{ \frac{ 2 }{ x } } \mathrm{d} x-\int{ 1 } \mathrm{d} x$
${x}^{5}-\frac{ 1 }{ 3{e}^{3x} }-2\ln\left({|x|}\right)-\int{ 1 } \mathrm{d} x$
${x}^{5}-\frac{ 1 }{ 3{e}^{3x} }-2\ln\left({|x|}\right)-x$
$\begin{array} { l }{x}^{5}-\frac{ 1 }{ 3{e}^{3x} }-2\ln\left({|x|}\right)-x+C,& C \in ℝ\end{array}$