1. The vertical motion can be analyzed using the formula for the position under constant acceleration:
y = y_0 + v_{y0} t - \frac{1}{2} g t^2
2. Since the beanbag is launched horizontally, the initial vertical velocity ( v_{y0} ) is 0, and the equation simplifies to:
y = y_0 - \frac{1}{2} g t^2
3. Setting y = 0 when the beanbag hits the ground and using y_0 = 1.3 m:
0 = 1.3 - \frac{1}{2} (9.81) t^2
4. Solving for t :
1.3 = \frac{1}{2} (9.81) t^2
2 \times 1.3 = 9.81 t^2
2.6 = 9.81 t^2
t^2 = \frac{2.6}{9.81}
t^2 = 0.2651
t = \sqrt{0.2651}
t \approx 0.515 \; \text{seconds}
Answer: t = 0.515 \; \text{seconds}
**b) What range should the students predict for the beanbag?**
[Solution]
R = 2.163 \; \text{meters}
[Step-by-Step]
1. The horizontal motion can be analyzed using the formula for uniform motion:
x = v_x t
2. We already found the time t = 0.515 seconds.
3. Using the initial horizontal speed v_x = 4.2 m/s:
x = 4.2 \times 0.515
4. Calculating x :
x = 4.2 \times 0.515
x \approx 2.163 \; \text{meters}
Answer: R = 2.163 \; \text{meters}