Question

Use 6.84 days as the planned value for the standard deviation ASSUME 95% confidence in what size the sample must be to have a margin of error of 1.5 days? If the precision statement was made with 90% confidence, what size sample should be made to have a margin of error of two days?

285

likes
1423 views

Answer to a math question Use 6.84 days as the planned value for the standard deviation ASSUME 95% confidence in what size the sample must be to have a margin of error of 1.5 days? If the precision statement was made with 90% confidence, what size sample should be made to have a margin of error of two days?

Expert avatar
Eliseo
4.6
111 Answers
Para determinar el tamaño de muestra requerido para un margen de error (E), un nivel de confianza y una desviación estándar (σ) determinados, utilizamos la fórmula para el tamaño de muestra n: n = \left(\frac{Z \cdot \sigma}{E}\right)^2 dónde: - Z es el valor Z correspondiente al nivel de confianza deseado, - \sigma es la desviación estándar, - E es el margen de error. ### Nivel de confianza del 95 % con un margen de error de 1,5 días Para un nivel de confianza del 95%, el valor Z es aproximadamente 1,96. Dado: - \sigma = 6,84 días, - E = 1,5 días. n = \left(\frac{1.96 \cdot 6.84}{1.5}\right)^2 n = \izquierda(\frac{13.4064}{1.5}\derecha)^2 n = \izquierda(8.9376\derecha)^2 n \aproximadamente 79,88 Como el tamaño de la muestra debe ser un número entero, redondeamos hacia arriba: n \aproximadamente 80 Por lo tanto, se necesita un tamaño de muestra de 80 para tener un margen de error de 1,5 días con un 95% de confianza. ### Nivel de confianza del 90 % con un margen de error de 2 días Para un nivel de confianza del 90%, el valor Z es aproximadamente 1,645. Dado: - \sigma = 6,84 días, - E = 2 días. n = \left(\frac{1.645 \cdot 6.84}{2}\right)^2 n = \izquierda(\frac{11.2518}{2}\derecha)^2 n = \izquierda(5.6259\derecha)^2 n \aproximadamente 31,65 Como el tamaño de la muestra debe ser un número entero, redondeamos hacia arriba: n \aproximadamente 32 Entonces, se necesita un tamaño de muestra de 32 para tener un margen de error de 2 días con un 90% de confianza.

Frequently asked questions (FAQs)
Math question: Sketch the graph of the logarithmic function f(x) = log(base 2) (x - 1), indicating key points and asymptotes.
+
What is the simplified expression of (3^4 * 6^2)/(2^2 * 3^2)?
+
What is the mode of the following set of numbers: 3, 5, 2, 4, 5?
+
New questions in Mathematics
Y=-x^2-8x-15 X=-7
What is the amount of interest of 75,000 at 3.45% per year, at the end of 12 years and 6 months?
(6.2x10^3)(3x10^-6)
The main cost of a 5 pound bag of shrimp is $47 with a variance of 36 if a sample of 43 bags of shrimp is randomly selected, what is the probability that the sample mean with differ from the true mean by less than $1.4
∫ √9x + 1 dx
A mutual fund manager has a $350 million portfolio with a beta of 1.10. The risk-free rate is 3.5%, and the market risk premium is 6.00%. The manager expects to receive an additional $150 million which she plans to invest in several different stocks. After investing the additional funds, she wants to reduce the portfolio’s risk level so that once the additional funds are invested the portfolio’s required return will be 9.20%. What must the average beta of the new stocks added to the portfolio be (not the new portfolio’s beta) to achieve the desired required rate of return?
Use a pattern to prove that (-2)-(-3)=1
A machine produces 255 bolts in 24 minutes. At the same rate, how many bolts would be produced in 40 minutes?
Take the limit of (sin(x-4))/(tan(x^2 - 16) as x approaches 4.
Find the zero of the linear function 8x + 24 = 0
Find the vertex F(x)=x^2-10x
What is the total amount due and the amount of interest on a 3-year loan of $1,000 at a simple interest rate of 12% per year?
How do you convert a fraction to a decimal
22. Let [AB] be a chord in a circle C, and k a circle which is internally tangent to the circle C at a point P and to the chord [AB] at a point Q. Show that the line P Q passes through the midpoint of the arc AB opposite to the arc APB.
A 20-year old hopes to retire by age 65. To help with future expenses, they invest $6 500 today at an interest rate of 6.4% compounded annually. At age 65, what is the difference between the exact accumulated value and the approximate accumulated value (using the Rule of 72)?
56 × 12 = 672. How should you adjust this answer 672 to determine 57 × 12? a) The answer increases by 1 b) The answer increases by 57 c) The answer increases by 56 d) The answer increases by 12
The slope of the tangent line to the curve f(x)=4tan x at the point (π/4,4)
Define excel and why we use it?
Triangle ABC has AB=AC and angle BAC =X, with X being less than 60 degrees. Point D lies on AB such that CB = CD Point E lies on AC such that CE= DE Determine angle DEC in terms of X
x(squared) -8x=0