1. Use the fact that the zeros of a quadratic function h(x) = a(x - r_1)(x - r_2) where r_1 and r_2 are the zeros.
2. Substitute the given zeros r_1 = 1 and r_2 = -6:
h(x) = a(x - 1)(x + 6)
3. Assume a = 1 (standard form):
h(x) = (x - 1)(x + 6)
4. Expand the product:
h(x) = x^2 + 6x - x - 6
h(x) = x^2 + 5x - 6
Answer: h(x) = x^2 + 5x - 6