of the 24m tall glass square pyramids of the Muttart Conservatory in Alberta, Canada, if each contains 5280m^3 of space","","1. Volume V of a square pyramid is given by the formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>V = \\frac{1}{3} B h\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>where B is the area of the base and h is the height of the pyramid.\u003Cbr>\u003Cbr>2. Given that the height h = 24 m and the volume V = 5280 m^3.\u003Cbr>\u003Cbr>3. The base is square, so if the side length of the base is s, then:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>B = s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substituting into the volume formula:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = \\frac{1}{3} s^2 \\times 24\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Simplify and solve for s^2:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>5280 = 8 s^2\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s^2 = \\frac{5280}{8} = 660\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Solve for s:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s = \\sqrt{660} \\approx 25.7\u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. To find the length of each base edge to the nearest tenth of a meter, compute:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s \\approx 25.7 \\, \\text{m}\u003C/math-field>\u003C/math-field>",418,84,"find-the-length-of-each-base-edge-to-the-nearest-tenth-of-a-meter-of-the-24m-tall-glass-square-pyramids-of-the-muttart-conservatory-in-alberta-canada-if-each-contains-5280m-3-of-space",{"id":55,"category":47,"text_question":56,"photo_question":49,"text_answer":57,"step_text_answer":19,"step_photo_answer":19,"views":58,"likes":59,"slug":60},538015,"Three times the sum of m an n","1. Identify the expression for the sum of \\( m \\) and \\( n \\): \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>m + n\u003C/math-field>\u003C/math-field>\u003Cbr />\n2. Multiply this sum by 3: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3(m+n)\u003C/math-field>\u003C/math-field>\u003Cbr />\n3. The final expression is the answer: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>3(m+n)\u003C/math-field>\u003C/math-field>",1237,247,"three-times-the-sum-of-m-an-n",{"id":62,"category":47,"text_question":63,"photo_question":49,"text_answer":64,"step_text_answer":19,"step_photo_answer":19,"views":65,"likes":66,"slug":67},538011,"mWhat is the image of point (-5, -2) when it is reflected across y = -x?","Solution:\u003Cbr />\n1. Reflection across the line \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = -x\u003C/math-field>\u003C/math-field>:\u003Cbr />\n - To find the image of a point \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(x, y)\u003C/math-field>\u003C/math-field> after reflection across \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = -x\u003C/math-field>\u003C/math-field>, swap the coordinates and change their signs:\u003Cbr />\n - Original point: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(-5, -2)\u003C/math-field>\u003C/math-field>\u003Cbr />\n - Swap and change signs: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(-(-2), -(-5)) = (2, 5)\u003C/math-field>\u003C/math-field>\u003Cbr />\n2. The image of the point $(-5, -2)$ after reflection across the line \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>y = -x\u003C/math-field>\u003C/math-field> is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>(2, 5)\u003C/math-field>\u003C/math-field>.",1038,208,"mwhat-is-the-image-of-point-5-2-when-it-is-reflected-across-y-x",{"id":69,"category":47,"text_question":70,"photo_question":49,"text_answer":71,"step_text_answer":19,"step_photo_answer":19,"views":72,"likes":73,"slug":74},537995,"-x+2y=0\n3x+2y=8\nSolve","1. Let's solve the system of equations:\u003Cbr />\n\u003Cbr />\n The given equations are:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> -x + 2y = 0 \\quad ...(1) \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3x + 2y = 8 \\quad ...(2) \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. First, solve equation (1) for \\( x \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> -x + 2y = 0 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n Rearranging, we have:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 2y \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Substitute \\( x = 2y \\) into equation (2):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 3(2y) + 2y = 8 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n Simplify:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 6y + 2y = 8 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 8y = 8 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> y = 1 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Substitute \\( y = 1 \\) back into \\( x = 2y \\):\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 2(1) \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 2 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Therefore, the solution to the system is:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> x = 2, \\quad y = 1 \u003C/math-field>\u003C/math-field>",553,111,"x-2y-0-3x-2y-8-solve",{"id":76,"category":47,"text_question":77,"photo_question":49,"text_answer":78,"step_text_answer":19,"step_photo_answer":19,"views":79,"likes":80,"slug":81},537957,"5a/10b-10b2+8\nWhere a =-8 and b=-6","1. Substitute \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\( a = -8 \\)\u003C/math-field>\u003C/math-field> and \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\( b = -6 \\)\u003C/math-field>\u003C/math-field> into the expression: \u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{5(-8)}{10(-6)} - 10(-6)^2 + 8 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>2. Simplify \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\( \\frac{5(-8)}{10(-6)} \\)\u003C/math-field>\u003C/math-field> :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{5 \\times (-8)}{10 \\times (-6)} = \\frac{-40}{-60} = \\frac{2}{3} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>3. Calculate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\( 10(-6)^2 \\)\u003C/math-field>\u003C/math-field> :\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 10 \\times (-6)^2 = 10 \\times 36 = 360 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>4. Substitute these values back into the expression:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{2}{3} - 360 + 8 \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>5. Combine the terms carefully:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{2}{3} + 8 = \\frac{2}{3} + \\frac{24}{3} = \\frac{26}{3} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>6. Subtract 360:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{26}{3} - 360 = \\frac{26}{3} - \\frac{1080}{3} = \\frac{26 - 1080}{3} = \\frac{-1054}{3} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>7. Final result is:\u003Cbr>\u003Cbr>\u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> \\frac{-1054}{3} \u003C/math-field>\u003C/math-field> \u003Cbr>\u003Cbr>The answer is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\(-\\frac{1054}{3}\\)\u003C/math-field>\u003C/math-field>.",738,148,"5a-10b-10b2-8-where-a-8-and-b-6",{"id":83,"category":47,"text_question":84,"photo_question":49,"text_answer":85,"step_text_answer":19,"step_photo_answer":19,"views":86,"likes":87,"slug":88},537914,"Integration by parts for \\int \\ln x dx :","Solution:\u003Cbr />\n1. Identify the components of integration by parts:\u003Cbr />\n - Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>u = \\ln x\u003C/math-field>\u003C/math-field>, then \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>du = \\frac{1}{x} \\, dx\u003C/math-field>\u003C/math-field>.\u003Cbr />\n - Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>dv = dx\u003C/math-field>\u003C/math-field>, then \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>v = x\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n2. Apply the integration by parts formula \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\int u \\, dv = uv - \\int v \\, du\u003C/math-field>\u003C/math-field>:\u003Cbr />\n * The formula becomes:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\int \\ln x \\, dx = x \\ln x - \\int x \\left(\\frac{1}{x} \\right) \\, dx\u003C/math-field>\u003C/math-field>.\u003Cbr />\n\u003Cbr />\n3. Simplify the remaining integral:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\int x \\left(\\frac{1}{x} \\right) \\, dx = \\int 1 \\, dx = x + C\u003C/math-field>\u003C/math-field>, where \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>C\u003C/math-field>\u003C/math-field> is the integration constant.\u003Cbr />\n\u003Cbr />\n4. Substitute back to get the final result:\u003Cbr />\n * \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\int \\ln x \\, dx = x \\ln x - x + C\u003C/math-field>\u003C/math-field>.\u003Cbr />",258,52,"integration-by-parts-for-int-ln-x-dx",{"id":90,"category":47,"text_question":91,"photo_question":49,"text_answer":92,"step_text_answer":19,"step_photo_answer":19,"views":93,"likes":94,"slug":95},537845,"X-10=-25","To solve the equation \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> X - 10 = -25 \u003C/math-field>\u003C/math-field>, we need to isolate \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> X \u003C/math-field>\u003C/math-field> by adding 10 to both sides: \u003Cbr />\n\u003Cbr />\n1. Start with the original equation: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> X - 10 = -25 \u003C/math-field>\u003C/math-field>\u003Cbr />\n2. Add 10 to both sides: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> X - 10 + 10 = -25 + 10 \u003C/math-field>\u003C/math-field>\u003Cbr />\n3. Simplify both sides: \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> X = -15 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\nThe solution is \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> X = -15 \u003C/math-field>\u003C/math-field>",1297,259,"x-10-25",{"id":97,"category":47,"text_question":98,"photo_question":49,"text_answer":99,"step_text_answer":19,"step_photo_answer":19,"views":100,"likes":101,"slug":102},537797,"What is a rectangular prism measures 610cm by 514cm by 370 what is the surface area","1. Calculate the area of the top and bottom faces:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2lw = 2(610 \\times 514) = 627,080 \\, \\text{cm}^2 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Calculate the area of the front and back faces:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2lh = 2(610 \\times 370) = 451,400 \\, \\text{cm}^2 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Calculate the area of the left and right faces:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> 2wh = 2(514 \\times 370) = 380,240 \\, \\text{cm}^2 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Sum all the calculated areas:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> SA = 627,080 + 451,400 + 380,240 = 1,458,720 \\, \\text{cm}^2 \u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Final answer:\u003Cbr />\n\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only> SA = 1,458,720 \\, \\text{cm}^2 \u003C/math-field>\u003C/math-field>",1254,251,"what-is-a-rectangular-prism-measures-610cm-by-514cm-by-370-what-is-the-surface-area",{"id":104,"category":47,"text_question":105,"photo_question":49,"text_answer":106,"step_text_answer":19,"step_photo_answer":19,"views":107,"likes":108,"slug":109},537762,"X^2=81^1*1/2 \n Find x","Solution:\u003Cbr />\n1. Start with the equation:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>X^2 = 81^{\\frac{1}{2}}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. Recognize that \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>81^{\\frac{1}{2}}\u003C/math-field>\u003C/math-field> is the square root of 81:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>81^{\\frac{1}{2}} = \\sqrt{81}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Calculate the square root of 81:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>\\sqrt{81} = 9\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. Substitute back into the equation:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>X^2 = 9\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n5. Solve for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>X\u003C/math-field>\u003C/math-field> by taking the square root of both sides:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>X = \\pm \\sqrt{9}\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n6. Simplify the result:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>X = \\pm 3\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n7. Thus, the solutions for \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>X\u003C/math-field>\u003C/math-field> are:\u003Cbr />\n \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>X = 3\u003C/math-field>\u003C/math-field> and \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>X = -3\u003C/math-field>\u003C/math-field>",411,82,"x-2-81-1-1-2-find-x",{"id":111,"category":47,"text_question":112,"photo_question":49,"text_answer":113,"step_text_answer":19,"step_photo_answer":19,"views":114,"likes":115,"slug":116},537681,"A square has a side length of s write a rule in function notation to represent the perimeter","Solution:\u003Cbr />\n1. Given:\u003Cbr />\n- A square with side length \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>s\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n2. The formula for the perimeter \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P\u003C/math-field>\u003C/math-field> of a square is:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P = 4 \\cdot s\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n3. Express the formula as a function:\u003Cbr />\n- Let \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P(s) = 4s\u003C/math-field>\u003C/math-field>\u003Cbr />\n\u003Cbr />\n4. The function notation for the perimeter of the square is:\u003Cbr />\n- \u003Cmath-field read-only default-mode=\"inline-math\" class=\"math-expression\">\u003Cmath-field read-only>P(s) = 4s\u003C/math-field>\u003C/math-field>",1119,224,"a-square-has-a-side-length-of-s-write-a-rule-in-function-notation-to-represent-the-perimeter",{"first":17,"last":5,"prev":19,"next":21},{"current_page":17,"from":17,"last_page":5,"links":119,"path":144,"per_page":145,"to":145,"total":13},[120,123,126,128,130,132,134,137,140,142],{"url":17,"label":121,"active":122},"1",true,{"url":21,"label":124,"active":125},"2",false,{"url":24,"label":127,"active":125},"3",{"url":27,"label":129,"active":125},"4",{"url":30,"label":131,"active":125},"5",{"url":33,"label":133,"active":125},"6",{"url":135,"label":136,"active":125},7,"7",{"url":138,"label":139,"active":125},8,"8",{"url":5,"label":141,"active":125},"9",{"url":21,"label":143,"active":125},"Next »","https://api.math-master.org/api/question/expert",10,{"$sicons":147},{"la:apple":148,"ph:google-logo":152,"mdi:web":155,"bxl:facebook-circle":158,"bxl:instagram":160,"ph:google-logo-bold":162},{"left":149,"top":149,"width":150,"height":150,"rotate":149,"vFlip":125,"hFlip":125,"body":151},0,32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":149,"top":149,"width":153,"height":153,"rotate":149,"vFlip":125,"hFlip":125,"body":154},256,"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"left":149,"top":149,"width":156,"height":156,"rotate":149,"vFlip":125,"hFlip":125,"body":157},24,"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":149,"top":149,"width":156,"height":156,"rotate":149,"vFlip":125,"hFlip":125,"body":159},"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":149,"top":149,"width":156,"height":156,"rotate":149,"vFlip":125,"hFlip":125,"body":161},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":149,"top":149,"width":153,"height":153,"rotate":149,"vFlip":125,"hFlip":125,"body":163},"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"kBaKyykRVJ":19,"oVhJaef6Ht":19,"t96FybqVTi":19,"fJ7gll588I":19},"/expert/gerhard-9?page=6"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}