In the bolded column, subtract the second digit from the first
$\begin{matrix}\:\:&2&.&0&0&0&\bold{0}\\-&0&.&7&6&8&\bold{5}\end{matrix}$
The top digit is not bigger than the bottom one. Try to 'borrow' a digit from the left.
$\begin{matrix}\:\:&2&.&0&0&\bold{0}&0\\-&0&.&7&6&\bold{8}&5\end{matrix}$
The top digit is not bigger than the bottom one. Try to 'borrow' a digit from the left.
$\begin{matrix}\:\:&2&.&0&\bold{0}&0&0\\-&0&.&7&\bold{6}&8&5\end{matrix}$
The top digit is not bigger than the bottom one. Try to 'borrow' a digit from the left.
$\begin{matrix}\:\:&2&.&\bold{0}&0&0&0\\-&0&.&\bold{7}&6&8&5\end{matrix}$
Borrow
$1$ from
$2$. The remainder is
$1$
$\begin{matrix}\:\:&\bold{1}&\:\:&10&\:\:&\:\:&\:\:\\\:\:&\bold{2}&.&0&0&0&0\\-&\bold{0}&.&7&6&8&5\end{matrix}$
Add
$1$ ten to
$010+0=10$
$\begin{matrix}\:\:&1&\:\:&\bold{10}&\:\:&\:\:&\:\:\\\:\:&2&.&\bold{0}&0&0&0\\-&0&.&\bold{7}&6&8&5\end{matrix}$
Borrow
$1$ from
$10$. The remainder is
$9$
$\begin{matrix}\:\:&1&\:\:&\bold{9}&10&\:\:&\:\:\\\:\:&2&.&\bold{\linethrough{10}}&0&0&0\\-&0&.&\bold{7}&6&8&5\end{matrix}$
Add
$1$ ten to
$010+0=10$
$\begin{matrix}\:\:&1&\:\:&9&\bold{10}&\:\:&\:\:\\\:\:&2&.&\linethrough{10}&\bold{0}&0&0\\-&0&.&7&\bold{6}&8&5\end{matrix}$
Borrow
$1$ from
$10$. The remainder is
$9$
$\begin{matrix}\:\:&1&\:\:&9&\bold{9}&10&\:\:\\\:\:&2&.&\linethrough{10}&\bold{\linethrough{10}}&0&0\\-&0&.&7&\bold{6}&8&5\end{matrix}$
Add
$1$ ten to
$010+0=10$
$\begin{matrix}\:\:&1&\:\:&9&9&\bold{10}&\:\:\\\:\:&2&.&\linethrough{10}&\linethrough{10}&\bold{0}&0\\-&0&.&7&6&\bold{8}&5\end{matrix}$
Borrow
$1$ from
$10$. The remainder is
$9$
$\begin{matrix}\:\:&1&\:\:&9&9&\bold{9}&10\\\:\:&2&.&\linethrough{10}&\linethrough{10}&\bold{\linethrough{10}}&0\\-&0&.&7&6&\bold{8}&5\end{matrix}$
Add
$1$ ten to
$010+0=10$
$\begin{matrix}\:\:&1&\:\:&9&9&9&\bold{10}\\\:\:&2&.&\linethrough{10}&\linethrough{10}&\linethrough{10}&\bold{0}\\-&0&.&7&6&8&\bold{5}\end{matrix}$
In the bolded column, subtract the second digit from the first
$10-5=5$
$\frac{\begin{matrix}\:\:&1&\:\:&9&9&9&\bold{10}\\\:\:&2&.&\linethrough{10}&\linethrough{10}&\linethrough{10}&\bold{0}\\-&0&.&7&6&8&\bold{5}\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\:\:&\:\:&\bold{5}\end{matrix}}$
In the bolded column, subtract the second digit from the first
$9-8=1$
$\frac{\begin{matrix}\:\:&1&\:\:&9&9&\bold{9}&10\\\:\:&2&.&\linethrough{10}&\linethrough{10}&\bold{\linethrough{10}}&0\\-&0&.&7&6&\bold{8}&5\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\:\:&\bold{1}&5\end{matrix}}$
In the bolded column, subtract the second digit from the first
$9-6=3$
$\frac{\begin{matrix}\:\:&1&\:\:&9&\bold{9}&9&10\\\:\:&2&.&\linethrough{10}&\bold{\linethrough{10}}&\linethrough{10}&0\\-&0&.&7&\bold{6}&8&5\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\bold{3}&1&5\end{matrix}}$
In the bolded column, subtract the second digit from the first
$9-7=2$
$\frac{\begin{matrix}\:\:&1&\:\:&\bold{9}&9&9&10\\\:\:&2&.&\bold{\linethrough{10}}&\linethrough{10}&\linethrough{10}&0\\-&0&.&\bold{7}&6&8&5\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\bold{2}&3&1&5\end{matrix}}$
Place the decimal point in the answer directly below the decimal points in the terms
$\frac{\begin{matrix}\:\:&1&\bold{\:\:}&9&9&9&10\\\:\:&2&\bold{.}&\linethrough{10}&\linethrough{10}&\linethrough{10}&0\\-&0&\bold{.}&7&6&8&5\end{matrix}}{\begin{matrix}\:\:&\:\:&\bold{.}&2&3&1&5\end{matrix}}$
In the bolded column, subtract the second digit from the first
$1-0=1$
$\frac{\begin{matrix}\:\:&\bold{1}&\:\:&9&9&9&10\\\:\:&\bold{2}&.&\linethrough{10}&\linethrough{10}&\linethrough{10}&0\\-&\bold{0}&.&7&6&8&5\end{matrix}}{\begin{matrix}\:\:&\bold{1}&.&2&3&1&5\end{matrix}}$
Write the numbers one under the other, line up the decimal points.
$
$Add trailing zeroes so the numbers have the same length.
$\begin{matrix}\:\:&2&.&0&0&0&0\\-&0&.&7&6&8&5\end{matrix}$
$=1.2315$