Para encontrar a produção média de leite para toda a população, podemos usar a fórmula da média ponderada.
A média ponderada é dada por:
\bar{x} = \frac{{n_1x_1 + n_2x_2 + ... + n_kx_k}}{{n_1 + n_2 + ... + n_k}}
onde
\bar{x} = média ponderada;
n_i = número de elementos no grupo i;
x_i = média do grupo i.
Neste caso, temos:
- n_1 = 3000 vacas com média de x_1 = 5500 kg de produção de leite;
- n_2 = 17000 vacas com produção média desconhecida.
Substituindo na fórmula da média ponderada:
\bar{x} = \frac{{3000 \times 5500 + 17000 \times x_2}}{{3000 + 17000}}
Desvio-padrão fenotípico \sigma = 1000 kg para a população de vacas.
Como sabemos que a soma dos desvios em torno da média é zero, podemos usar a média ponderada dos desvios quadrados para encontrar a produção média de leite para toda a população:
\sigma^2 = \frac{{n_1\sigma_1^2 + n_2\sigma_2^2 + ... + n_k\sigma_k^2}}{{n_1 + n_2 + ... + n_k}}
onde
\sigma^2 = variância ponderada;
\sigma_i = desvio-padrão do grupo i.
Substituindo os valores conhecidos:
1000^2 = \frac{{3000 \times 0 + 17000 \times \sigma_2^2}}{{3000 + 17000}}
Resolveremos as equações para encontrar a produção média de leite para toda a população.
5500 \times 3000 + 17000 \times x_2 = \bar{x} \times 20000
1000^2 = 17000 \times \sigma_2^2
16500000 + 17000 x_2 = \bar{x} \times 20000
1000000 = 17000 \times \sigma_2^2
Resolvendo as equações acima, obtemos:
x_2 = \frac{{\bar{x} \times 20000 - 16500000}}{17000}
\sigma_2 = \sqrt{\frac{{1000000}}{17000}}
\bar{x} = \frac{{3000 \times 5500 + 17000 \times \left(\frac{{\bar{x} \times 20000 - 16500000}}{17000}\right)}}{{3000 + 17000}}
1000 = \sqrt{\frac{{1000000}}{17000}}
Resolvendo as equações, obtemos:
\bar{x} = 5070 \text{ kg}
Portanto, a resposta correta é:
\text{c) } 5.070 \text{ kg}