Question

Calculate ∬_RdA where R is the region bounded in the first quadrant by y^2=x^3 and the line y=x.

153

likes
763 views

Answer to a math question Calculate ∬_RdA where R is the region bounded in the first quadrant by y^2=x^3 and the line y=x.

Expert avatar
Clarabelle
4.7
94 Answers
¡Absolutamente! Aquí se explica cómo calcular la integral doble y encontrar el área de la región. **1. Dibuja la región** Primero, siempre es una buena práctica visualizar la región de integración. * **y^2 = x^3:** Esta es una parábola lateral que se abre hacia la derecha. * **y = x:** Esta es una línea recta que pasa por el origen con una pendiente de 1. Se cruzan en el primer cuadrante formando la región R. **2. Determinar los límites de la integración** Dado que estamos tratando con una región algo inusual, es más fácil integrar primero con respecto a 'y' y luego a 'x' (dy dx). * **límites de y:** y va desde 0 hasta el punto donde se cruzan la línea y la curva. Para encontrar este punto, sustituye y=x en la ecuación y^2 = x^3. Esto nos da x^2 = x^3 => x = 1 (descartamos x = 0 ya que es el origen). Por tanto, 0 ≤ y ≤ 1. * **límites de x:** Para cada valor de y, x va desde la recta y=x hasta la curva y^2 = x^3. Resolviendo la ecuación de la curva para x, obtenemos x = y^(2/3). Entonces, y ≤ x ≤ y^(2/3). **3. Configurar la integral doble** La integral doble que representa el área es: ∬_RdA = ∫_(0)^(1) ∫_(y)^(y^(2/3)) dx dy **4. Evaluar la integral interna** ∫_(y)^(y^(2/3)) dx = [x]_(y)^(y^(2/3)) = y^(2/3) - y **5. Evaluar la integral exterior** ∫_(0)^(1) (y^(2/3) - y) dy = [3/5 * y^(5/3) - 1/2 * y^2 ]_(0)^(1 ) = 3/5 - 1/2 = 1/10 **6. El resultado** El valor de la integral doble es 1/10 unidades cuadradas. Esto representa el área de la región R.

Frequently asked questions (FAQs)
What is the simplified form of (3^2 * 3^4) / (3^3) + (3^3)^2?
+
Math question: "Graph the exponential function y = 2^x on the coordinate plane, considering values of x from -5 to 5. What does the graph look like?"
+
What is the sine of the angle π/3 radians?
+
New questions in Mathematics
A pump with average discharge of 30L/second irrigate 100m wide and 100m length field area crop for 12 hours. What is an average depth of irrigation in mm unIt?
The patient is prescribed a course of 30 tablets. The tablets are prescribed “1 tablet twice a day”. How many days does a course of medication last?
Calculate the equation of the tangent line ay=sin(x) cos⁡(x)en x=π/2
What’s 20% of 125?
(5u + 6)-(3u+2)=
If the midpoint of point A on the x=3 line and point B on the y=-2 line is C(-2,0), what is the sum of the ordinate of point A and the abscissa of point B?
A person borrows rm 1000 from a bank at an interest rate of 10%. After some time, he pays the bank rm 1900 as full and final settlement of the loan. Estimate the duration of his loan.
4x/2+5x-3/6=7/8-1/4-x
There are four times as many roses as tulips in Claire’s garden. Claire picked half of the number of roses and 140 roses were left in the garden. How many roses and tulips were in the Garden the first?
Suppose the Golf ball market is perfectly competitive and the functions are known: Q = 120 – 2Px – 2Py 0.2I Q = 2Px 40 Where I = Consumers' income ($200) and Py = Price of Good Y (40) Calculate the equilibrium elasticity: a) 1.6 b) -6 c) 6 d) 0.6
The ninth term of a given geometric progression, with reason q , is 1792, and its fourth term is 56. Thus, calculate the fourth term of another geometric progression, whose ratio is q +1 and whose first term is equal to the first term of the first P.G. described.
If X1 and X2 are independent standard normal variables, find P(X1^2 + X2^2 > 2.41)
30y - y . y = 144
Determine the increase of the function y=4x−5 when the argument changes from x1=2 to x2=3
Find each coefficient described. Coefficient of u^2 in expansion of (u - 3)^3
A teacher has 25 red and yellow counters altogether. She has 4 times as many red counters than yellow counters. How many yellow counters does the teacher have?
In a laboratory test, it was found that a certain culture of bacteria develops in a favorable environment, doubling its population every 2 hours. The test started with a population of 100 bacteria. After six hours, it is estimated that the number of bacteria will be:
X^X =49 X=?
Find the equation of a straight line that has slope 3 and passes through the point of (1, 7) . Write the equation of the line in general forms
-1/3x+15=18