Question

Calculate ∬_RdA where R is the region bounded in the first quadrant by y^2=x^3 and the line y=x.

153

likes
763 views

Answer to a math question Calculate ∬_RdA where R is the region bounded in the first quadrant by y^2=x^3 and the line y=x.

Expert avatar
Clarabelle
4.7
94 Answers
¡Absolutamente! Aquí se explica cómo calcular la integral doble y encontrar el área de la región. **1. Dibuja la región** Primero, siempre es una buena práctica visualizar la región de integración. * **y^2 = x^3:** Esta es una parábola lateral que se abre hacia la derecha. * **y = x:** Esta es una línea recta que pasa por el origen con una pendiente de 1. Se cruzan en el primer cuadrante formando la región R. **2. Determinar los límites de la integración** Dado que estamos tratando con una región algo inusual, es más fácil integrar primero con respecto a 'y' y luego a 'x' (dy dx). * **límites de y:** y va desde 0 hasta el punto donde se cruzan la línea y la curva. Para encontrar este punto, sustituye y=x en la ecuación y^2 = x^3. Esto nos da x^2 = x^3 => x = 1 (descartamos x = 0 ya que es el origen). Por tanto, 0 ≤ y ≤ 1. * **límites de x:** Para cada valor de y, x va desde la recta y=x hasta la curva y^2 = x^3. Resolviendo la ecuación de la curva para x, obtenemos x = y^(2/3). Entonces, y ≤ x ≤ y^(2/3). **3. Configurar la integral doble** La integral doble que representa el área es: ∬_RdA = ∫_(0)^(1) ∫_(y)^(y^(2/3)) dx dy **4. Evaluar la integral interna** ∫_(y)^(y^(2/3)) dx = [x]_(y)^(y^(2/3)) = y^(2/3) - y **5. Evaluar la integral exterior** ∫_(0)^(1) (y^(2/3) - y) dy = [3/5 * y^(5/3) - 1/2 * y^2 ]_(0)^(1 ) = 3/5 - 1/2 = 1/10 **6. El resultado** El valor de la integral doble es 1/10 unidades cuadradas. Esto representa el área de la región R.

Frequently asked questions (FAQs)
Math question: What is the maximum value of the function f(x) = x^3 - 6x^2 + 9x on the interval [-2, 4]?
+
What is the derivative of f(x) = 3x^4 - 8x^3 + 2x^2 - 7x + 9 with respect to x?
+
What is the unit vector in the direction of the vector v = 3i + 4j?
+
New questions in Mathematics
calculate the derivative by the limit definition: f(x) = 6x^3 + 2
String x = 5 Int y=2 System.out.println(x+y)
The profit G of the company CHUNCHES SA is given by G(x) = 3×(40 – ×), where × is the quantity of items sold. Find the maximum profit.
Consider numbers from 1 to 2023. We want to delete 3 consecutive, so that the avarage of the left numbers is a whole number. How do we do that
A brass cube with an edge of 3 cm at 40 °C increased its volume to 27.12 cm3. What is the final temperature that achieves this increase?
The actual length of an object is 1.3 m . If the blueprint uses a scale of 1 : 12 , what is the length of the line on the drawing?
the probabilty that a person has a motorcycle, given that she owns a car 25%. the percentage of people owing a motorcycle is 15% and that who own a car is 35%. find probabilty that a person owns any one or both of those
2/3+5/6×1/2
(24, -7) is on the terminal arm of an angle in standard position. Determine the exact values of the primary trigonometric functions.
The market for economics textbooks is represented by the following supply and demand equations: P = 5 + 2Qs P = 20 - Qd Where P is the price in £s and Qs and Qd are the quantities supplied and demanded in thousands. What is the equilibrium price?
Fill in the P(X-x) values to give a legitimate probability distribution for the discrete random variable X, whose possible values are -5 ,3 , 4, 5 , and 6.
List the remaining zeros of the polynomial with the given zeros Zeros are: 2, 3i, and 3 + i
2X+2=8
What is the total amount due and the amount of interest on a 3-year loan of $1,000 at a simple interest rate of 12% per year?
X^X =49 X=?
8. Measurement Jillian measured the distance around a small fish pond to be 27 yards. What would be a good estimate of the distance across the pond: 14 yards, 9 yards, or 7 yards? Explain how you decided.
9n + 7(-8 + 4k) use k=2 and n=3
6(k-7) -2=5
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.
Construct a set of six pieces of data with​ mean, median, and midrange of 67 and where no two pieces of data are the same.