Question

Calculate ∬_RdA where R is the region bounded in the first quadrant by y^2=x^3 and the line y=x.

153

likes
763 views

Answer to a math question Calculate ∬_RdA where R is the region bounded in the first quadrant by y^2=x^3 and the line y=x.

Expert avatar
Clarabelle
4.7
94 Answers
¡Absolutamente! Aquí se explica cómo calcular la integral doble y encontrar el área de la región. **1. Dibuja la región** Primero, siempre es una buena práctica visualizar la región de integración. * **y^2 = x^3:** Esta es una parábola lateral que se abre hacia la derecha. * **y = x:** Esta es una línea recta que pasa por el origen con una pendiente de 1. Se cruzan en el primer cuadrante formando la región R. **2. Determinar los límites de la integración** Dado que estamos tratando con una región algo inusual, es más fácil integrar primero con respecto a 'y' y luego a 'x' (dy dx). * **límites de y:** y va desde 0 hasta el punto donde se cruzan la línea y la curva. Para encontrar este punto, sustituye y=x en la ecuación y^2 = x^3. Esto nos da x^2 = x^3 => x = 1 (descartamos x = 0 ya que es el origen). Por tanto, 0 ≤ y ≤ 1. * **límites de x:** Para cada valor de y, x va desde la recta y=x hasta la curva y^2 = x^3. Resolviendo la ecuación de la curva para x, obtenemos x = y^(2/3). Entonces, y ≤ x ≤ y^(2/3). **3. Configurar la integral doble** La integral doble que representa el área es: ∬_RdA = ∫_(0)^(1) ∫_(y)^(y^(2/3)) dx dy **4. Evaluar la integral interna** ∫_(y)^(y^(2/3)) dx = [x]_(y)^(y^(2/3)) = y^(2/3) - y **5. Evaluar la integral exterior** ∫_(0)^(1) (y^(2/3) - y) dy = [3/5 * y^(5/3) - 1/2 * y^2 ]_(0)^(1 ) = 3/5 - 1/2 = 1/10 **6. El resultado** El valor de la integral doble es 1/10 unidades cuadradas. Esto representa el área de la región R.

Frequently asked questions (FAQs)
What is the dot product of vector A(2, 4, -3) and vector B(5, -1, 7)?
+
What is the period of the trigonometric function f(x) = 2cos(3x) + sin(2x)?
+
What is the value of y when x=3 in the circle function x^2 + y^2 = 9?
+
New questions in Mathematics
what is 456456446+24566457
The length and breadth of my rectangular vegetable garden is 12,5m and 7,25m respectively. What is the perimeter of the garden?
58+861-87
Elliot opened a savings account and deposited $5000.00 as principal. The account earns 4% interest, compounded annually. How much interest will he earn after 5 years? Round your answer to the nearest cent.
(6.2x10^3)(3x10^-6)
Find the measures of the sides of ∆KPL and classify each triangle by its sides k (-2,-6), p (-4,0), l (3,-1)
Determine the momentum of a 20 kg body traveling at 20 m/s.
A National Solidarity Bond offers A 5 year bond offering a gross return of 15% Calculate the AER for this investment. (Give your answer to two decimal places, no need for the percent or € sign in your answer)
How many anagrams of the word STROMEC there that do not contain STROM, MOST, MOC or CEST as a subword? By subword is meant anything that is created by omitting some letters - for example, the word EMROSCT contains both MOC and MOST as subwords.
The physician orders 15mg of tramadol(liquid). On hand is 30mg/2mL vials. How many mL will the MA administer?
In the telephone exchange of a certain university, calls come in at a rate of 5 every 2 minutes. Assuming a Poisson distribution, the average number of calls per second is: a) 1/8 b) 1/12 c) 1/10 d) 2/5 e) 1/24
A researcher is interested in voting preferences on change of the governing constitution in a certain country controlled by two main parties A and B. A questionnaire was developed and sent to a random sample of voters. The cross tabs are as follows Favour Neutral Oppose Membership: Party A 70 90 85 Party B 50 50 155 Test at α = 0.05 whether party membership and voting preference are associated and state the conditions required for chi-square test results to be valid.
48 kg of 30% sulfuric acid in a mixture of 10% and 40% sulfuric acid arose. How many kilograms were each of the original solutions?
1. A jeweler has two gold bars, with 80% purity and the other with 95% purity. How much of each must be melted to obtain a 5 kilo ingot with 86% purity?
Solve for B write your answer as a fraction or as a whole number. B-1/7=4
An election ballot asks voters to select three city judges from a group of 12 candidates. How many ways can this be done?
calculate the product of 4 and 1/8
How many digits are there in Hindu-Arabic form of numeral 26 × 1011
5a-3.(a-7)=-3
In a cheese factory, one pie costs 3800 denars. The fixed ones costs are 1,200,000 denars, and variable costs are 2,500 denars per pie. To encounter: a) income functions. profit and costs; b) the break-even point and profit and loss intervals.