Question

Calculate ∬_RdA where R is the region bounded in the first quadrant by y^2=x^3 and the line y=x.

153

likes
763 views

Answer to a math question Calculate ∬_RdA where R is the region bounded in the first quadrant by y^2=x^3 and the line y=x.

Expert avatar
Clarabelle
4.7
94 Answers
¡Absolutamente! Aquí se explica cómo calcular la integral doble y encontrar el área de la región. **1. Dibuja la región** Primero, siempre es una buena práctica visualizar la región de integración. * **y^2 = x^3:** Esta es una parábola lateral que se abre hacia la derecha. * **y = x:** Esta es una línea recta que pasa por el origen con una pendiente de 1. Se cruzan en el primer cuadrante formando la región R. **2. Determinar los límites de la integración** Dado que estamos tratando con una región algo inusual, es más fácil integrar primero con respecto a 'y' y luego a 'x' (dy dx). * **límites de y:** y va desde 0 hasta el punto donde se cruzan la línea y la curva. Para encontrar este punto, sustituye y=x en la ecuación y^2 = x^3. Esto nos da x^2 = x^3 => x = 1 (descartamos x = 0 ya que es el origen). Por tanto, 0 ≤ y ≤ 1. * **límites de x:** Para cada valor de y, x va desde la recta y=x hasta la curva y^2 = x^3. Resolviendo la ecuación de la curva para x, obtenemos x = y^(2/3). Entonces, y ≤ x ≤ y^(2/3). **3. Configurar la integral doble** La integral doble que representa el área es: ∬_RdA = ∫_(0)^(1) ∫_(y)^(y^(2/3)) dx dy **4. Evaluar la integral interna** ∫_(y)^(y^(2/3)) dx = [x]_(y)^(y^(2/3)) = y^(2/3) - y **5. Evaluar la integral exterior** ∫_(0)^(1) (y^(2/3) - y) dy = [3/5 * y^(5/3) - 1/2 * y^2 ]_(0)^(1 ) = 3/5 - 1/2 = 1/10 **6. El resultado** El valor de la integral doble es 1/10 unidades cuadradas. Esto representa el área de la región R.

Frequently asked questions (FAQs)
What is the probability of obtaining exactly 4 heads in 7 coin tosses using a fair coin?
+
How many radians are in 45 degrees?
+
What is the surface area of a sphere with a radius 4 units?
+
New questions in Mathematics
A particular employee arrives at work sometime between 8:00 a.m. and 8:50 a.m. Based on past experience the company has determined that the employee is equally likely to arrive at any time between 8:00 a.m. and 8:50 a.m. Find the probability that the employee will arrive between 8:05 a.m. and 8:40 a.m. Round your answer to four decimal places, if necessary.
11(4x-9)= -319
8x-(5-x)
x/20*100
(-5/6)-(-5/4)
Estimate the quotient for 3.24 ÷ 82
X~N(2.6,1.44). find the P(X<3.1)
ind the z-score for which 72% of the distribution's area lies between -z and z. -1.7417, 1.7417 -1.1538, 1.1538 -1.0803, 1.0803 -2.826, 2.826
Your grandfather has run a small high street pharmacy for 40 years. After much persuasion, he has agreed to open a digital store online. List 5 potential ways to improve sales and/or margins by having a digital pharmacy through the utilisation of historic or new sales data.
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) − f(p)| ≤ M|g(x) − g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
48 kg of 30% sulfuric acid in a mixture of 10% and 40% sulfuric acid arose. How many kilograms were each of the original solutions?
nI Exercises 65-68, the latitudes of a pair of cities are given. Assume that one city si directly south of the other and that the earth is a perfect sphere of radius 4000 miles. Use the arc length formula in terms of degrees to find the distance between the two cities. 65. The North Pole: latitude 90° north Springfield, Illinois: latitude 40° north
Determine the kinetic energy of a baseball whose mass is 100 grams and has a speed of 30 m/s.
Kayla started a book club at her school. The number of girls in the book club was one more than twice the number of boys. If there are 15 girls in the book club, how many boys are in the club?
How many digits are there in Hindu-Arabic form of numeral 26 × 1011
8(x+4) -4=4x-1
3(x-4)=156
2p-6=8+5(p+9)
The length of a rectangle is five more than its width. if the perimeter is 120, find both the length and the width.
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.