1. Consider the function:  f(x) = \log_5(x^3) 
2. To determine the domain, we need the argument of the logarithm to be greater than zero:  x^3 > 0 
3. Since  x^3 > 0  when  x > 0 , the domain is:  \text{Dominio: } x > 0 
4. To determine the range, note that the function  f(x) = \log_5(x^3)  can take any real number value because as  x^3  ranges over positive real numbers,  \log_5(x^3)  ranges over all real numbers.
5. Therefore, the range is:  \text{Rango: } (-\infty, \infty) 
**Answer:**  
 \text{Dominio: } x > 0   
 \text{Rango: } (-\infty, \infty)