To evaluate \tan^{-1}( \tan 245^\circ ) , we need to first simplify by using properties of inverse trigonometric functions.
1. Recall that \tan^{-1}( \tan x ) = x for -\frac{\pi}{2} < x < \frac{\pi}{2} .
2. Since 245^\circ is not within -90^\circ to 90^\circ , we need to adjust it to an angle within this range while keeping the same tangent value.
3. 245^\circ = 245^\circ - 180^\circ = 65^\circ .
Therefore, \tan^{-1}( \tan 245^\circ ) = \tan^{-1}( \tan 65^\circ ) = 65^\circ .
\boxed{ \text{Answer: } 65^\circ }