Question

Find the general equation of the line that passes through the points 𝑃 1(−5 , 7) and 𝑃2(4 , 2)

129

likes647 views

Fred

4.4

71 Answers

Encontrar la ecuación general de la recta que pasa por dos puntos.
𝑃_1(−5,7) y P_2(4,2), podemos usar la forma punto-pendiente de una ecuación lineal:
yy-1=\frac{\left(y_2-y_1\right)}{\left(x_2-x_1\right)}\left(x-x_1\right)
Donde \left(x_1,y_1\right)=(-5,7)\:y\:\left(x_2,y_2\right)=\left(4,2\right)
Poniendo valores y-7=\frac{(2-7)}{4-\left(-5\right)}(x-\left(-5\right)) y-7=- \frac{5}{9}\left(x+5\right) y=-\frac{5}{9}x-\frac{25}{9}+7=-\frac{5 }{9\:}\:x+\frac{38}{9}
la respuesta es y=-\frac{5}{9}x+\frac{38}{9}

Frequently asked questions (FAQs)

What is the equation of a parabola that opens upwards, has its vertex at (2,3), and passes through the point (4,8)?

+

What is the average number of goals scored by each player in a soccer team if they scored a total of 120 goals in 10 matches?

+

What is the radian measure of an angle formed by an arc of length π and a radius of 1 unit?

+

New questions in Mathematics